On isometries of some Riemannian Lie groups
Izvestiya. Mathematics , Tome 66 (2002) no. 4, pp. 683-699.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study isometry groups of Lie groups endowed with left-invariant Riemannian metrics. We mainly consider triangular Lie groups. By the familiar Gordon–Wilson theorem, calculating the isometry groups of left-invariant metrics on such groups is reduced to calculating the automorphism groups of the corresponding Lie algebras and to distinguishing compact subgroups of these groups. We consider nilpotent Lie groups in more detail, with special attention to filiform Lie groups and their relatives (prefiliform, quasifiliform). As a rule, we state the main results in terms of the automorphism groups of Lie algebras and then give their geometric interpretation. Special attention is paid to finding the group of connected components of the isometry group (in particular, it is calculated for all filiform Lie groups) and to conditions guaranteeing that the group of rotations (that is, isometries preserving a given point) is finite for certain classes of Riemannian Lie groups.
@article{IM2_2002_66_4_a1,
     author = {V. V. Gorbatsevich},
     title = {On isometries of some {Riemannian} {Lie} groups},
     journal = {Izvestiya. Mathematics },
     pages = {683--699},
     publisher = {mathdoc},
     volume = {66},
     number = {4},
     year = {2002},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2002_66_4_a1/}
}
TY  - JOUR
AU  - V. V. Gorbatsevich
TI  - On isometries of some Riemannian Lie groups
JO  - Izvestiya. Mathematics 
PY  - 2002
SP  - 683
EP  - 699
VL  - 66
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2002_66_4_a1/
LA  - en
ID  - IM2_2002_66_4_a1
ER  - 
%0 Journal Article
%A V. V. Gorbatsevich
%T On isometries of some Riemannian Lie groups
%J Izvestiya. Mathematics 
%D 2002
%P 683-699
%V 66
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2002_66_4_a1/
%G en
%F IM2_2002_66_4_a1
V. V. Gorbatsevich. On isometries of some Riemannian Lie groups. Izvestiya. Mathematics , Tome 66 (2002) no. 4, pp. 683-699. http://geodesic.mathdoc.fr/item/IM2_2002_66_4_a1/

[1] Skott P., Geometrii na trekhmernykh mnogoobraziyakh, Mir, M., 1986

[2] Ishihara S., “Homogeneous Riemannian spaces of four dimensions”, J. Math. Soc. of Japan, 7:4 (1955), 345–370 | MR | Zbl

[3] Filipkievich R. P., Four-dimensional geometries, Ph. D. thesis, Univ. of Warwick, 1984

[4] Chetyrekhmernaya rimanova geometriya, Seminar Artura Besse, Mir, M., 1985 | MR

[5] Vinberg E. B., Gorbatsevich V. V., Onischik A. L., Stroenie grupp i algebr Li, Itogi nauki i tekhn. Sovr. probl. matem. Fundam. napravl., 41, VINITI, M., 1990

[6] Wolf J., “On locally symmetric spaces of nonnegative curvature and certain other locally symmetric spaces”, Comm. Math. Helv., 37:4 (1963), 265–295 | MR

[7] Wilson E., “Isometry groups on homogeneous manifolds”, Geom. Dedicata, 12:3 (1982), 337–346 | DOI | MR | Zbl

[8] Gordon C., Wilson G., “Isometry groups of Riemannian solvmanifolds”, Trans. Amer. Math. Soc., 307:1 (1988), 246–269 | DOI | MR

[9] Alekseevskii D. V., “Sopryazhennost polyarnykh razlozhenii grupp Li”, Matem. sb., 84:1 (1971), 14–26 | MR | Zbl

[10] Khamfri Dzh., Lineinye algebraicheskie gruppy, Nauka, M., 1980 | MR

[11] Vinberg E. B., “Teorema Borelya–Morozova dlya veschestvennykh grupp Li”, DAN SSSR, 141:2 (1961), 270–274 | MR

[12] Djokovich D., “Three remarks on real analytic groups”, Tohoku Math. J., 28:3 (1976), 381–387 | DOI | MR

[13] Khakimdzhanov Yu., “O differentsirovanii nekotorykh nilpotentnykh algebr Li”, Izv. vuzov. Matematika, 1976, no. 1, 100–110 | Zbl

[14] Janos L., “On maximal groups of isometries”, Proc. Amer. Math. Soc., 28:2 (1971), 584–586 | DOI | MR | Zbl

[15] Burbaki N., Gruppy i algebry Li, Gl. I–III, Mir, M., 1976 | MR

[16] Bajo I., “Homogeneous nilmanifolds with prescribed isotropy”, Ann. Glob. Anal. and Geom., 13:2 (1995), 149–154 | DOI | MR | Zbl

[17] Bajo I., “Isotropy of non-nilpotent solvable Lie groups”, Ann. Glob. Anal. and Geom., 14:1 (1996), 61–67 | DOI | MR | Zbl

[18] Bryant R., Groves J., “Algebraic groups of automorphism of nilpotent groups and Lie algebras”, J. London Math. Soc., 33:2 (1986), 453–456 | DOI | MR

[19] Vergne M., “Cohomologie des algebres de Lie nilpotentes. Applications a l'etude de la variete des algebres de Lie nilpotentes”, Bull. Soc. Math. France, 98 (1970), 81–116 | MR | Zbl

[20] Vranceanu G., “Clasificarea grupurilor lui Lie de rang zero”, Studii di cercetari matematice, 1 (1950), 269–308 | MR

[21] Bajo I., Isometrias sobre grupos de Lie Riemannianos y semi-Riemannianos, V. 84, Publ. Dept. Geom. Topol., Santiago de Compostelo, 1995 | Zbl

[22] Milnor J., “On Betti numbers of real varieties”, Proc. Amer. Math. Soc., 15:2 (1964), 275–280 | DOI | MR | Zbl

[23] Yamaguchi S., “On some classes of nilpotent Lie algebras and their automorphism groups”, Mem. Fac. Sci. Kyushu Univ., 35:2 (1981), 341–351 | DOI | MR | Zbl

[24] Goze V., Hakimjanov Ju., “Sur les algebres de Lie nilpotentes admettant un tore de derivations”, Manus. Math., 84 (1994), 115–124 | DOI | MR | Zbl