The halo problem in the theory of differentiation of integrals
Izvestiya. Mathematics , Tome 66 (2002) no. 4, pp. 659-681.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let there be given a Lorentz space and an Orlicz space with equal fundamental functions. We construct a differential basis that differentiates the integrals of functions belonging to the Lorentz space, but does not differentiate the integral of some function belonging to the Orlicz space. Such bases enable us to obtain a negative solution of the so-called halo problem for $p\in(1,\infty)$. Morillon [1], Russian p. 186, proved that this problem has a positive solution in the case when $p=1$.
@article{IM2_2002_66_4_a0,
     author = {E. I. Berezhnoi and A. V. Novikov},
     title = {The halo problem in the theory of differentiation of integrals},
     journal = {Izvestiya. Mathematics },
     pages = {659--681},
     publisher = {mathdoc},
     volume = {66},
     number = {4},
     year = {2002},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2002_66_4_a0/}
}
TY  - JOUR
AU  - E. I. Berezhnoi
AU  - A. V. Novikov
TI  - The halo problem in the theory of differentiation of integrals
JO  - Izvestiya. Mathematics 
PY  - 2002
SP  - 659
EP  - 681
VL  - 66
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2002_66_4_a0/
LA  - en
ID  - IM2_2002_66_4_a0
ER  - 
%0 Journal Article
%A E. I. Berezhnoi
%A A. V. Novikov
%T The halo problem in the theory of differentiation of integrals
%J Izvestiya. Mathematics 
%D 2002
%P 659-681
%V 66
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2002_66_4_a0/
%G en
%F IM2_2002_66_4_a0
E. I. Berezhnoi; A. V. Novikov. The halo problem in the theory of differentiation of integrals. Izvestiya. Mathematics , Tome 66 (2002) no. 4, pp. 659-681. http://geodesic.mathdoc.fr/item/IM2_2002_66_4_a0/

[1] Gusman M., Differentsirovanie integralov v $\mathbb R^n$, Mir, M., 1978 | MR

[2] Stokolos A. M., “On the differentiation of integrals of functions from $L\Phi(L)$”, Studia Math., 88 (1988), 103–120 | MR | Zbl

[3] Stokolos A. M., “On the differentiation of integrals of functions from Orlicz classes”, Studia Math., 94 (1989), 35–50 | MR | Zbl

[4] Berezhnoi E. I., “O differentsirovanii integralov ot funktsii iz simmetrichnykh prostranstv differentsialnymi bazisami”, Analysis Mathematica, 22 (1996), 267–288 | DOI | MR | Zbl

[5] Berezhnoi E. I., Perfilev A. A., “Razlichenie simmetrichnykh prostranstv i $L^\infty$ s pomoschyu differentsialnogo bazisa”, Matem. zametki, 69:4 (2001), 515–523 | MR | Zbl

[6] Lebesgue A., “Sur l`integration des fonctions discontinues”, Ann. Sci. Ecole Norm. Sup., 27 (1910), 361–450 | MR | Zbl

[7] Jessen B., Marzinkiewicz J., Zygmund A., “Note on the differentiality of multiple integrals”, Fund. Math., 25 (1935), 217–234 | Zbl

[8] Zygmund A., “A note on the differentiality of multiple integrals”, Collog. Math., 16 (1967), 199–204 | MR | Zbl

[9] Saks S., “On the strong derivatives of functions of integrals”, Fund. Math., 25 (1935), 235–252 | Zbl

[10] Melero B., “A negative result in differentiation theory”, Studia Math., 72 (1982), 173–182 | MR | Zbl

[11] Krein S. G., Petunin Yu. I., Semenov E. M., Interpolyatsiya lineinykh operatorov, Nauka, M., 1977 | MR

[12] Lindenstrauss J., Tzafriri L., Classical Banach spaces, V. I, II, Springer, Berlin, 1979 | MR | Zbl

[13] Berezhnoi E. I., “Differentsialnye svoistva bazisov i problema okaimleniya dlya simmetrichnykh prostranstv”, Sib. matem. zhurn., 36:6 (1995), 1234–1250 | MR | Zbl