Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_2002_66_3_a7, author = {D. A. Shakin}, title = {$I$-stable ideals}, journal = {Izvestiya. Mathematics }, pages = {631--657}, publisher = {mathdoc}, volume = {66}, number = {3}, year = {2002}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_2002_66_3_a7/} }
D. A. Shakin. $I$-stable ideals. Izvestiya. Mathematics , Tome 66 (2002) no. 3, pp. 631-657. http://geodesic.mathdoc.fr/item/IM2_2002_66_3_a7/
[1] Eliahou S., Kervaire M., “Minimal resolutions of some monomial ideals”, J. Algebra, 129 (1990), 1–25 | DOI | MR | Zbl
[2] Bigatti A. M., “Upper bounds for the Betti numbers of a given Hilbert function”, Comm. Algebra, 21 (1993), 2317–2334 | DOI | MR | Zbl
[3] Aramova A., Herzog J., Hibi T., “Squarefree lexsegment ideals”, Math. Z., 228 (1998), 353–378 | DOI | MR | Zbl
[4] Aramova A., Herzog J., Hibi T., “Weakly stable ideals”, Osaka J. Math., 34 (1997), 745–755 | MR | Zbl
[5] Golod E. S., “O gomologiyakh nekotorykh lokalnykh kolets”, DAN SSSR, 144:3 (1962), 479–482 | MR | Zbl
[6] Avramov L. L., “Infinite Free Resolutions, Six Lectures on Commutative Algebra”, Progr. Math., 166 (1998), 1–118 | MR | Zbl
[7] Bass H., “On the ubiquity of Gorenstein rings”, Math. Z., 82:1 (1963), 8–28 | DOI | MR | Zbl
[8] Aramova A., Herzog J., “Resolutions and Kozsul homology”, J. Pure Appl. Algebra, 105 (1995), 1–16 | DOI | MR | Zbl
[9] Aramova A., Herzog J., “Kozsul cycles and Eliahou–Kervaire type resolutions”, J. Algebra, 181 (1996), 347–370 | DOI | MR | Zbl