Dynamical correspondence in algebraic Lagrangian geometry
Izvestiya. Mathematics , Tome 66 (2002) no. 3, pp. 611-629
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper, which is a continuation of [12], we develop the idea of applying Abelian Lagrangian algebraic geometry (see [3], [4], [10], [11]) to geometric quantization. The Dirac correspondence principle holds for this ALG(a)-quantization. The known models of geometric quantization involving the choice of real or complex polarizations are presented as reductions (or linearizations) of the proposed quantization. This enables us to link the results
of known constructions that use polarizations.
@article{IM2_2002_66_3_a6,
author = {N. A. Tyurin},
title = {Dynamical correspondence in algebraic {Lagrangian} geometry},
journal = {Izvestiya. Mathematics },
pages = {611--629},
publisher = {mathdoc},
volume = {66},
number = {3},
year = {2002},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_2002_66_3_a6/}
}
N. A. Tyurin. Dynamical correspondence in algebraic Lagrangian geometry. Izvestiya. Mathematics , Tome 66 (2002) no. 3, pp. 611-629. http://geodesic.mathdoc.fr/item/IM2_2002_66_3_a6/