Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_2002_66_3_a6, author = {N. A. Tyurin}, title = {Dynamical correspondence in algebraic {Lagrangian} geometry}, journal = {Izvestiya. Mathematics }, pages = {611--629}, publisher = {mathdoc}, volume = {66}, number = {3}, year = {2002}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_2002_66_3_a6/} }
N. A. Tyurin. Dynamical correspondence in algebraic Lagrangian geometry. Izvestiya. Mathematics , Tome 66 (2002) no. 3, pp. 611-629. http://geodesic.mathdoc.fr/item/IM2_2002_66_3_a6/
[1] Ashtekar A., Schilling T., Geometrical formulation of quantum mechanics, E-print gr-qc/9706069 | MR
[2] Berezin F. A., Vvedenie v algebru i analiz s antikommutiruyuschimi peremennymi, Izd-vo MGU, M., 1983 | MR
[3] Gorodentsev A., Tyurin A., ALAG, Preprint No 00-7, Max-Planck-Inst., Bonn, 2000
[4] Gorodentsev A. L., Tyurin A. N., “Abeleva lagranzheva algebraicheskaya geometriya”, Izv. RAN. Ser. matem., 65:3 (2001), 15–50 | MR | Zbl
[5] Khudaverdian O. M., Semidensities on odd symplectic super manifolds, E-print DG/0012256
[6] Khart N., Geometricheskoe kvantovanie v deistvii, Mir, M., 1985 | MR
[7] Rawnsley J., Cahen M., Gutt S., “Quantization of Kaehler manifolds, 1”, JGP, 7:1 (1990), 45–62 | DOI | MR | Zbl
[8] Rothstein M., “The structure of supersymplectic supermanifolds”, Lecture notes in Phys., 375, Springer, Berlin, 1991, 331–343 | MR
[9] Sniatycki J., Geometric quantization and quantum mechanics, Springer, Berlin, 1987 | MR
[10] Tyurin A., On Bohr–Sommerfeld bases, E-print AG/9909084 | MR
[11] Tyurin A., Complexification of Bohr–Sommerfeld condition, Preprint No 15, Math. Inst. Univ. of Oslo, 1999
[12] Tyurin N. A., “Printsip sootvetstviya v abelevoi lagranzhevoi geometrii”, Izv. RAN. Ser. matem., 65:4 (2001), 191–204 | MR | Zbl