Dynamical correspondence in algebraic Lagrangian geometry
Izvestiya. Mathematics , Tome 66 (2002) no. 3, pp. 611-629.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, which is a continuation of [12], we develop the idea of applying Abelian Lagrangian algebraic geometry (see [3], [4], [10], [11]) to geometric quantization. The Dirac correspondence principle holds for this ALG(a)-quantization. The known models of geometric quantization involving the choice of real or complex polarizations are presented as reductions (or linearizations) of the proposed quantization. This enables us to link the results of known constructions that use polarizations.
@article{IM2_2002_66_3_a6,
     author = {N. A. Tyurin},
     title = {Dynamical correspondence in algebraic {Lagrangian} geometry},
     journal = {Izvestiya. Mathematics },
     pages = {611--629},
     publisher = {mathdoc},
     volume = {66},
     number = {3},
     year = {2002},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2002_66_3_a6/}
}
TY  - JOUR
AU  - N. A. Tyurin
TI  - Dynamical correspondence in algebraic Lagrangian geometry
JO  - Izvestiya. Mathematics 
PY  - 2002
SP  - 611
EP  - 629
VL  - 66
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2002_66_3_a6/
LA  - en
ID  - IM2_2002_66_3_a6
ER  - 
%0 Journal Article
%A N. A. Tyurin
%T Dynamical correspondence in algebraic Lagrangian geometry
%J Izvestiya. Mathematics 
%D 2002
%P 611-629
%V 66
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2002_66_3_a6/
%G en
%F IM2_2002_66_3_a6
N. A. Tyurin. Dynamical correspondence in algebraic Lagrangian geometry. Izvestiya. Mathematics , Tome 66 (2002) no. 3, pp. 611-629. http://geodesic.mathdoc.fr/item/IM2_2002_66_3_a6/

[1] Ashtekar A., Schilling T., Geometrical formulation of quantum mechanics, E-print gr-qc/9706069 | MR

[2] Berezin F. A., Vvedenie v algebru i analiz s antikommutiruyuschimi peremennymi, Izd-vo MGU, M., 1983 | MR

[3] Gorodentsev A., Tyurin A., ALAG, Preprint No 00-7, Max-Planck-Inst., Bonn, 2000

[4] Gorodentsev A. L., Tyurin A. N., “Abeleva lagranzheva algebraicheskaya geometriya”, Izv. RAN. Ser. matem., 65:3 (2001), 15–50 | MR | Zbl

[5] Khudaverdian O. M., Semidensities on odd symplectic super manifolds, E-print DG/0012256

[6] Khart N., Geometricheskoe kvantovanie v deistvii, Mir, M., 1985 | MR

[7] Rawnsley J., Cahen M., Gutt S., “Quantization of Kaehler manifolds, 1”, JGP, 7:1 (1990), 45–62 | DOI | MR | Zbl

[8] Rothstein M., “The structure of supersymplectic supermanifolds”, Lecture notes in Phys., 375, Springer, Berlin, 1991, 331–343 | MR

[9] Sniatycki J., Geometric quantization and quantum mechanics, Springer, Berlin, 1987 | MR

[10] Tyurin A., On Bohr–Sommerfeld bases, E-print AG/9909084 | MR

[11] Tyurin A., Complexification of Bohr–Sommerfeld condition, Preprint No 15, Math. Inst. Univ. of Oslo, 1999

[12] Tyurin N. A., “Printsip sootvetstviya v abelevoi lagranzhevoi geometrii”, Izv. RAN. Ser. matem., 65:4 (2001), 191–204 | MR | Zbl