Irrationality of values of the Riemann zeta function
Izvestiya. Mathematics , Tome 66 (2002) no. 3, pp. 489-542.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper deals with a generalization of Rivoal's construction, which enables one to construct linear approximating forms in 1 and the values of the zeta function $\zeta(s)$ only at odd points. We prove theorems on the irrationality of the number $\zeta(s)$ for some odd integers $s$ in a given segment of the set of positive integers. Using certain refined arithmetical estimates, we strengthen Rivoal's original results on the linear independence of the $\zeta(s)$.
@article{IM2_2002_66_3_a2,
     author = {W. V. Zudilin},
     title = {Irrationality of values of the {Riemann} zeta function},
     journal = {Izvestiya. Mathematics },
     pages = {489--542},
     publisher = {mathdoc},
     volume = {66},
     number = {3},
     year = {2002},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2002_66_3_a2/}
}
TY  - JOUR
AU  - W. V. Zudilin
TI  - Irrationality of values of the Riemann zeta function
JO  - Izvestiya. Mathematics 
PY  - 2002
SP  - 489
EP  - 542
VL  - 66
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2002_66_3_a2/
LA  - en
ID  - IM2_2002_66_3_a2
ER  - 
%0 Journal Article
%A W. V. Zudilin
%T Irrationality of values of the Riemann zeta function
%J Izvestiya. Mathematics 
%D 2002
%P 489-542
%V 66
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2002_66_3_a2/
%G en
%F IM2_2002_66_3_a2
W. V. Zudilin. Irrationality of values of the Riemann zeta function. Izvestiya. Mathematics , Tome 66 (2002) no. 3, pp. 489-542. http://geodesic.mathdoc.fr/item/IM2_2002_66_3_a2/

[1] Apéry R., “Irrationalité de $\zeta(2)$ et $\zeta(3)$”, Astérisque, 61 (1979), 11–13 | MR | Zbl

[2] Van der Poorten A., “A proof that Euler missed... Apéry's proof of the irrationality of $\zeta(3)$. An informal report”, Math. Intelligencer, 1:4 (1978/79), 195–203 | MR

[3] Beukers F., “A note on the irrationality of $\zeta(2)$ and $\zeta(3)$”, Bull. London Math. Soc., 11 (1979), 268–272 | DOI | MR | Zbl

[4] Gutnik L. A., “Ob irratsionalnosti nekotorykh velichin, soderzhaschikh $\zeta(3)$”, UMN, 34:3 (1979), 190 ; Acta Arith., 42:3 (1983), 255–264 | MR | Zbl | MR | Zbl

[5] Beukers F., “Padé approximations in number theory”, Lecture Notes in Math., 888, Springer-Verlag, Berlin, 1981, 90–99 | MR

[6] Beukers F., “Irrationality proofs using modular forms”, Astérisque, 147–148 (1987), 271–283 | MR | Zbl

[7] Sorokin V. N., “Approksimatsii Ermita–Pade dlya sistem Nikishina i irratsionalnost $\zeta(3)$”, UMN, 49:2 (1994), 167–168 | MR | Zbl

[8] Nesterenko Yu. V., “Nekotorye zamechaniya o $\zeta(3)$”, Matem. zametki, 59:6 (1996), 865–880 | MR | Zbl

[9] Hata M., “A new irrationality measure for $\zeta(3)$”, Acta Arith., 92:1 (2000), 47–57 | MR | Zbl

[10] Rhin G., Viola C., “The group structure for $\zeta(3)$”, Acta Arith., 97:3 (2001), 269–293 | DOI | MR | Zbl

[11] Vasilyev D. V., On small linear forms for the values of the Riemann zeta-function at odd points, Preprint No1 (558), Nat. Acad. Sci. Belarus, Institute Math., Minsk, 2001

[12] Ball K., Diophantine approximation of hypergeometric numbers, Preprint, 2000

[13] Rivoal T., “La fonction zêta de Riemann prend une infinité de valeurs irrationnelles aux entiers impairs”, C. R. Acad. Sci. Paris. Sér. I. Math., 331:4 (2000), 267–270 ; arXiv: math/0008051 | MR | Zbl

[14] Rivoal T., Propriétés diophantiennes des valeurs de la fonction zêta de Riemann aux entiers impairs, Thèse de Doctorat, Univ. de Caen, Caen, 2001

[15] Ball K., Rivoal T., “Irrationalité d'une infinité de valeurs de la fonction zêta aux entiers impairs”, Invent. Math., 146:1 (2001), 193–207 | DOI | MR | Zbl

[16] Nesterenko Yu. V., “O lineinoi nezavisimosti chisel”, Vestn. MGU. Ser. 1. Matematika, mekhanika, 1985, no. 1, 46–54 | MR

[17] Khessami Pilerud T. G., Arifmeticheskie svoistva znachenii gipergeometricheskikh funktsii, Dis. $\dots$ kand. fiz.-matem. nauk, MGU, M., 1999

[18] Rukhadze E. A., “Otsenka snizu priblizheniya $\ln2$ ratsionalnymi chislami”, Vestn. MGU. Ser. 1. Matematika, mekhanika, 1987, no. 6, 25–29 | MR

[19] Zudilin V. V., “Ob irratsionalnosti znachenii dzeta-funktsii v nechetnykh tochkakh”, UMN, 56:2 (2001), 215–216 | MR | Zbl

[20] Nikishin E. M., “Ob irratsionalnosti znachenii funktsii $F(x,s)$”, Matem. sb., 109:3 (1979), 410–417 | MR | Zbl

[21] Nesterenko Yu. V., Diofantovy priblizheniya k dzeta-funktsii Rimana, Doklad na nauchno-issledovatelskom seminare po teorii chisel (4 oktyabrya 2000 g.), MGU, M., 2000

[22] Leng S., Vvedenie v teoriyu modulyarnykh form, Mir, M., 1979 | MR

[23] De Brëin N. G., Asimptoticheskie metody v analize, IL, M., 1961

[24] Yoshida M., Hypergeometric function, my love, Aspects of Math., E 32, Vieweg, Wiesbaden, 1997

[25] Chudnovsky G. V., “On the method of Thue–Siegel”, Ann. of Math. (2), 117:2 (1983), 325–382 | DOI | MR | Zbl

[26] Hata M., “Legendre type polynomials and irrationality measures”, J. Reine Angew. Math., 407:1 (1990), 99–125 | MR | Zbl

[27] Lyuk Yu., Spetsialnye matematicheskie funktsii i ikh approksimatsii, Mir, M., 1980

[28] Zudilin V. V., “Odno iz chisel $\zeta(5),\zeta(7),\zeta(9),\zeta(11)$ irratsionalno”, UMN, 56:4 (2001), 149–150 | MR | Zbl