Irrationality of values of the Riemann zeta function
Izvestiya. Mathematics , Tome 66 (2002) no. 3, pp. 489-542
Voir la notice de l'article provenant de la source Math-Net.Ru
The paper deals with a generalization of Rivoal's construction, which enables one to construct linear approximating forms in 1 and the values of the zeta function $\zeta(s)$ only at odd points. We prove theorems on the irrationality of the number $\zeta(s)$ for some odd integers $s$ in a given segment of the set of positive integers. Using certain refined arithmetical estimates, we strengthen Rivoal's original results on the linear independence of the $\zeta(s)$.
@article{IM2_2002_66_3_a2,
author = {W. V. Zudilin},
title = {Irrationality of values of the {Riemann} zeta function},
journal = {Izvestiya. Mathematics },
pages = {489--542},
publisher = {mathdoc},
volume = {66},
number = {3},
year = {2002},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_2002_66_3_a2/}
}
W. V. Zudilin. Irrationality of values of the Riemann zeta function. Izvestiya. Mathematics , Tome 66 (2002) no. 3, pp. 489-542. http://geodesic.mathdoc.fr/item/IM2_2002_66_3_a2/