Lattice gauge theories and the Florentino conjecture
Izvestiya. Mathematics , Tome 66 (2002) no. 2, pp. 425-442.

Voir la notice de l'article provenant de la source Math-Net.Ru

We investigate the relations between the space of classes of $\operatorname{SU}(2)$-representations of the fundamental group of a Riemann surface $\Sigma_\Gamma$ equipped with a trinion decomposition corresponding to a 3-valent graph $\Gamma$ and the $\operatorname{SU}(2)$ theory on $\Gamma$. We construct a section of the standard map of the orbit space of the gauge theory on $\Sigma_\Gamma$ onto that of the gauge theory on $\Gamma$. As an application, we prove a conjecture of Florentino.
@article{IM2_2002_66_2_a6,
     author = {A. N. Tyurin},
     title = {Lattice gauge theories and the {Florentino} conjecture},
     journal = {Izvestiya. Mathematics },
     pages = {425--442},
     publisher = {mathdoc},
     volume = {66},
     number = {2},
     year = {2002},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2002_66_2_a6/}
}
TY  - JOUR
AU  - A. N. Tyurin
TI  - Lattice gauge theories and the Florentino conjecture
JO  - Izvestiya. Mathematics 
PY  - 2002
SP  - 425
EP  - 442
VL  - 66
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2002_66_2_a6/
LA  - en
ID  - IM2_2002_66_2_a6
ER  - 
%0 Journal Article
%A A. N. Tyurin
%T Lattice gauge theories and the Florentino conjecture
%J Izvestiya. Mathematics 
%D 2002
%P 425-442
%V 66
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2002_66_2_a6/
%G en
%F IM2_2002_66_2_a6
A. N. Tyurin. Lattice gauge theories and the Florentino conjecture. Izvestiya. Mathematics , Tome 66 (2002) no. 2, pp. 425-442. http://geodesic.mathdoc.fr/item/IM2_2002_66_2_a6/

[1] Atiyah M., “The path integral formulation”, Oxford Seminar on Jones–Witten Theory, Michaelmas Term. Seminar 6, 1988, 106 pp.

[2] Tyurin A. N., Special lagrangian geometry and slightly deformed algebraic geometry (Splag and Sdag), Preprint No 22/1998. AG/9806006, Warwich Univ., 1998

[3] Hitchin N., Sawon J., Curvature and characteristic numbers of hyperkahler manifolds, E-print math.DG/9908114

[4] Donaldson S., “Gluing technique in the cohomology of moduli spaces”, Topological methods in modern mathematics (Stony Brook, 1991), Publish or Perish, Houston, 1993, 137–170 | MR | Zbl

[5] Tyurin A., Three mathematical faces of spin networks, E-print math.DG/0011038 | MR

[6] Jeffrey L. C., Weitsman J., “Bohr–Sommerfeld orbits in the moduli space of flat connections and the Verlinde dimension formula”, Commun. Math. Phys., 150 (1992), 593–630 | DOI | MR | Zbl

[7] Tyurin A. N., “O bazisakh Bora–Zommerfelda”, Izv. RAN. Ser. matem., 64:5 (2000), 163–196 | MR | Zbl

[8] Ramadas T. R., Singer L. M., Weitsman J., “Some comments on Chern–Simons gauge theory”, Commun. Math. Phys., 126 (1989), 409–420 | DOI | MR | Zbl

[9] Florentino C., Mourao J., Nunes J., Tyurin A., Analytical aspects of the theory non abelian theta functions, Preprint, IST, Lisboa, 2000