The arithmetic and geometry of a~generic hypersurface section
Izvestiya. Mathematics , Tome 66 (2002) no. 2, pp. 393-424.

Voir la notice de l'article provenant de la source Math-Net.Ru

If the Hodge conjecture (respectively the Tate conjecture or the Mumford–Tate conjecture) holds for a smooth projective variety $X$ over a field $k$ of characteristic zero, then it holds for a generic member $X_t$ of a $k$-rational Lefschetz pencil of hypersurface sections of $X$ of sufficiently high degree. The Mumford–Tate conjecture is true for the Hodge $\mathbb{Q}$-structure associated with vanishing cycles on $X_t$. If the transcendental part of the second cohomology of a K3 surface $S$ over a number field is an absolutely irreducible module under the action of the Hodge group $\operatorname{Hg}(S)$, then the punctual Hilbert scheme $\operatorname{Hilb}^2(S)$ is a hyperkähler fourfold satisfying the conjectures of Hodge, Tate and Mumford–Tate.
@article{IM2_2002_66_2_a5,
     author = {S. G. Tankeev},
     title = {The arithmetic and geometry of a~generic hypersurface section},
     journal = {Izvestiya. Mathematics },
     pages = {393--424},
     publisher = {mathdoc},
     volume = {66},
     number = {2},
     year = {2002},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2002_66_2_a5/}
}
TY  - JOUR
AU  - S. G. Tankeev
TI  - The arithmetic and geometry of a~generic hypersurface section
JO  - Izvestiya. Mathematics 
PY  - 2002
SP  - 393
EP  - 424
VL  - 66
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2002_66_2_a5/
LA  - en
ID  - IM2_2002_66_2_a5
ER  - 
%0 Journal Article
%A S. G. Tankeev
%T The arithmetic and geometry of a~generic hypersurface section
%J Izvestiya. Mathematics 
%D 2002
%P 393-424
%V 66
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2002_66_2_a5/
%G en
%F IM2_2002_66_2_a5
S. G. Tankeev. The arithmetic and geometry of a~generic hypersurface section. Izvestiya. Mathematics , Tome 66 (2002) no. 2, pp. 393-424. http://geodesic.mathdoc.fr/item/IM2_2002_66_2_a5/

[1] Beauville A., “Variétés kähleriennes dont la première classe de Chern est nulle”, J. Diff. Geom., 18 (1983), 755–782 | MR | Zbl

[2] Burbaki N., Gruppy i algebry Li, Mir, M., 1978 | MR

[3] Kassels Dzh., Frelikh A., Algebraicheskaya teoriya chisel, Mir, M., 1969

[4] Deligne P., “Théorie de Hodge, II”, Publ. Math. IHES, 40 (1971), 5–57 | MR | Zbl

[5] Deligne P., “La conjecture de Weil pour les surfaces $\mathrm{K}3$”, Invent. Math., 15 (1972), 206–226 | DOI | MR | Zbl

[6] Deligne P., “La conjecture de Weil, I”, Publ. Math. IHES, 43 (1974), 273–307 | MR

[7] Deligne P., “La conjecture de Weil, II”, Publ. Math. IHES, 52 (1980), 137–252 | MR | Zbl

[8] Fuks D. B., Fomenko A. T., Gutenmakher V. L., Gomotopicheskaya topologiya, Izd-vo MGU, M., 1969

[9] Fulton U., Teoriya peresechenii, Mir, M., 1989 | MR

[10] Gordon B. B., “A survey of the Hodge conjecture for Abelian varieties”, {J. D. Lewis,} A survey of the Hodge conjecture, CRM Monograph Series, 10, Centre de Recherches Mathématiques Université de Montréal, 1999, 297–356 | MR

[11] Hodge W. V. D., “The topological invariants of algebraic varieties”, Proc. Int. Congr. Math., V. 1, 1952, 182–192 | MR | Zbl

[12] Katz N., “Etude cohomologique des pinceaux de Lefschetz”, Groupes de monodromie en geometrie algebrique, SGA 7 II, Exposé XVIII, Lect. Notes Math., 340, 1969, 1–73

[13] Kleiman S. L., “Algebraic cycles and the Weil conjectures”, Dix exposés sur la cohomologie des schémas, North-Holland, Amsterdam, 1968, 359–386 | MR

[14] Lewis J. D., “The Hodge conjecture for a certain class of fourfolds”, Math. Ann., 268 (1984), 85–90 | DOI | MR | Zbl

[15] Miln Dzh., Etalnye kogomologii, Mir, M., 1983 | MR | Zbl

[16] Mamford D., Lektsii o krivykh na algebraicheskoi poverkhnosti, Mir, M., 1968

[17] Mumford D., “Families of Abelian varieties”, Proc. Sympos. Pure Math., 9 (1966), 347–352 | MR

[18] Okamoto M., “On a certain decomposition of $2$-dimensional cycles on a product of two algebraic surfaces”, Proc. Japan Acad., Ser. A, 57:6 (1981), 321–325 | DOI | MR | Zbl

[19] Onishchik A. L., Vinberg E. B., Lie groups and algebraic groups, Springer-Verlag, Berlin–Heidelberg–New York–London–Paris–Tokyo–Hong Kong, 1990 | MR | Zbl

[20] Serr Zh.-P., Algebry Li i gruppy Li, Mir, M., 1969 | MR | Zbl

[21] Shimura G., “Reduction of algebraic varieties with respect to a discrete valuation of the basic field”, Amer. J. Math., 77:1 (1955), 134–176 | DOI | MR | Zbl

[22] Steenbrink J. H. M., “Some remarks about the Hodge conjecture”, Lect. Notes Math., 1246 (1987), 165–175 | DOI | MR | Zbl

[23] Tankeev S. G., Ob algebraicheskikh tsiklakh na poverkhnostyakh i abelevykh mnogoobraziyakh, Dis. ...dokt. fiz.-matem. nauk, MGU, M., 1985

[24] Tankeev S. G., “Poverkhnosti tipa $\mathrm{K}3$ nad chislovymi polyami i gipoteza Mamforda–Teita, II”, Izv. RAN. Ser. matem., 59:3 (1995), 179–206 | MR | Zbl

[25] Tankeev S. G., “Some remarks about the general Hodge conjecture”, Algebraic cycles and related topics, Proceedings of the conference held in Kitasakado (Saitama, Japan, May 25–27, 1994), eds. Hazama, Fumio, World Scientific, Singapore, 1995, 77–81 | MR | Zbl

[26] Tate J., “Algebraic cycles and poles of zeta functions”, Arithmetical Algebraic Geometry, Harper and Row, N.-Y., 1965, 93–110 | MR

[27] Verde Zh.-L., “Nezavisimost ot $l$ kharakteristicheskogo polinoma endomorfizma Frobeniusa v $l$-adicheskikh kogomologiyakh (po rabote Delinya)”, Matematika, 18:2 (1974), 150–161 | MR

[28] Zarhin Yu. G., “Hodge group of $\mathrm{K}3$ surface”, J. für die reine und angew. Math., 341 (1983), 193–220 | MR

[29] Zarkhin Yu. G., “Vesa prostykh algebr Li v kogomologiyakh algebraicheskikh mnogoobrazii”, Izv. AN SSSR. Ser. matem., 48:2 (1984), 264–304 | MR | Zbl

[30] Zucker S., “The Hodge conjecture for cubic fourfolds”, Compos. Math., 34:2 (1977), 199–209 | MR | Zbl