The arithmetic and geometry of a~generic hypersurface section
Izvestiya. Mathematics , Tome 66 (2002) no. 2, pp. 393-424

Voir la notice de l'article provenant de la source Math-Net.Ru

If the Hodge conjecture (respectively the Tate conjecture or the Mumford–Tate conjecture) holds for a smooth projective variety $X$ over a field $k$ of characteristic zero, then it holds for a generic member $X_t$ of a $k$-rational Lefschetz pencil of hypersurface sections of $X$ of sufficiently high degree. The Mumford–Tate conjecture is true for the Hodge $\mathbb{Q}$-structure associated with vanishing cycles on $X_t$. If the transcendental part of the second cohomology of a K3 surface $S$ over a number field is an absolutely irreducible module under the action of the Hodge group $\operatorname{Hg}(S)$, then the punctual Hilbert scheme $\operatorname{Hilb}^2(S)$ is a hyperkähler fourfold satisfying the conjectures of Hodge, Tate and Mumford–Tate.
@article{IM2_2002_66_2_a5,
     author = {S. G. Tankeev},
     title = {The arithmetic and geometry of a~generic hypersurface section},
     journal = {Izvestiya. Mathematics },
     pages = {393--424},
     publisher = {mathdoc},
     volume = {66},
     number = {2},
     year = {2002},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2002_66_2_a5/}
}
TY  - JOUR
AU  - S. G. Tankeev
TI  - The arithmetic and geometry of a~generic hypersurface section
JO  - Izvestiya. Mathematics 
PY  - 2002
SP  - 393
EP  - 424
VL  - 66
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2002_66_2_a5/
LA  - en
ID  - IM2_2002_66_2_a5
ER  - 
%0 Journal Article
%A S. G. Tankeev
%T The arithmetic and geometry of a~generic hypersurface section
%J Izvestiya. Mathematics 
%D 2002
%P 393-424
%V 66
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2002_66_2_a5/
%G en
%F IM2_2002_66_2_a5
S. G. Tankeev. The arithmetic and geometry of a~generic hypersurface section. Izvestiya. Mathematics , Tome 66 (2002) no. 2, pp. 393-424. http://geodesic.mathdoc.fr/item/IM2_2002_66_2_a5/