Algorithmic solution of the problem of isometric realization for two-dimensional polyhedral metrics
Izvestiya. Mathematics , Tome 66 (2002) no. 2, pp. 377-391.

Voir la notice de l'article provenant de la source Math-Net.Ru

For polyhedra in general position that have a given combinatorial structure, an algorithm is suggested for finding all their metric characteristics, namely, their volumes, dihedral angles, and diagonals, from the lengths of their edges, and thus the possibility of developing a new line of geometric investigation is established, which, in analogy with the well-known term “solution of a triangle”, can be called “solution of a polyhedron”.
@article{IM2_2002_66_2_a4,
     author = {I. Kh. Sabitov},
     title = {Algorithmic solution of the problem of isometric realization for two-dimensional polyhedral metrics},
     journal = {Izvestiya. Mathematics },
     pages = {377--391},
     publisher = {mathdoc},
     volume = {66},
     number = {2},
     year = {2002},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2002_66_2_a4/}
}
TY  - JOUR
AU  - I. Kh. Sabitov
TI  - Algorithmic solution of the problem of isometric realization for two-dimensional polyhedral metrics
JO  - Izvestiya. Mathematics 
PY  - 2002
SP  - 377
EP  - 391
VL  - 66
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2002_66_2_a4/
LA  - en
ID  - IM2_2002_66_2_a4
ER  - 
%0 Journal Article
%A I. Kh. Sabitov
%T Algorithmic solution of the problem of isometric realization for two-dimensional polyhedral metrics
%J Izvestiya. Mathematics 
%D 2002
%P 377-391
%V 66
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2002_66_2_a4/
%G en
%F IM2_2002_66_2_a4
I. Kh. Sabitov. Algorithmic solution of the problem of isometric realization for two-dimensional polyhedral metrics. Izvestiya. Mathematics , Tome 66 (2002) no. 2, pp. 377-391. http://geodesic.mathdoc.fr/item/IM2_2002_66_2_a4/

[1] Aleksandrov A. D., Vypuklye mnogogranniki, Gostekhizdat, M.– L., 1950 | MR

[2] Astrelin A. V., Sabitov I. Kh., “Minimalnyi po stepeni mnogochlen dlya opredeleniya ob'ema oktaedra po ego metrike”, UMN, 50:5 (1992), 245–246 | MR

[3] Astrelin A. V., Sabitov I. Kh., “Kanonicheskii mnogochlen dlya ob'ema mnogogrannika”, UMN, 54:2 (1999), 165–166 | MR | Zbl

[4] Burago Yu. D., Zalgaller V. A., “Izometricheskie kusochno lineinye pogruzheniya dvumernykh mnogoobrazii s poliedralnoi metrikoi v $\mathbb R^3$”, Algebra i analiz, 7:3 (1995), 76–95 | MR | Zbl

[5] Sabitov I. Kh., “Algoritmicheskaya proverka izgibaemosti podvesok”, Ukr. geom. sb., 30 (1987), 109–112 | MR | Zbl

[6] Sabitov I. Kh., “K probleme ob invariantnosti ob'ema izgibaemogo mnogogrannika”, UMN, 50:2 (1995), 223–224 | MR | Zbl

[7] Sabitov I. Kh., “Ob'em mnogogrannika kak funktsiya ego metriki”, Fundam. i prikladn. matematika, 2:4 (1996), 1235–1246 | MR | Zbl

[8] Sabitov I. Kh., “Obobschennaya formula Gerona–Tartalya i nekotorye ee sledstviya”, Matem. sb., 189:10 (1998), 105–134 | MR | Zbl

[9] Sabitov I. Kh., “Reshenie mnogogrannikov”, Dokl. RAN, 377:2 (2001), 161–164 | MR | Zbl

[10] Sabitov I. Kh., “Nekotorye primeneniya formuly dlya ob'ema mnogogrannikov”, Tr. konferentsii “Geometriya i prilozheniya”, posvyaschennoi 70-letiyu V. A. Toponogova, Izd-vo Instituta matematiki SO RAN, Novosibirsk, 2001, 183–197 | MR | Zbl

[11] Blumental L. M., Theory and Applications of Distance Geometry, Chelsea, N. Y., 1970

[12] Gluck H., “Almost all simple connected closed sutfaces are rigid”, Lec. Notes in Math., 438 (1975), 225–239 | DOI | MR | Zbl

[13] Graver J., “Rigidity of triangulated surfaces”, Colloquium during the Special Semester on Structural Rigidity, Centre de recherches Mathématiques, Université de Monréal, 1987

[14] Fogelsanger A., The generic rigidity of minimal cycles, Preprint, Cornell University, 1987

[15] Sabitov I. Kh., “The Volume as a Metric Invariant of Polyhedra”, Discrete and Computat. Geometry, 20:4 (1998), 405–425 | DOI | MR | Zbl

[16] Sabitov I. Kh., “On some recent results in the metric theory of polyhedra”, Supplemento ai Rendiconti del Circolo Mat. di Palermo. Serie II, 2000, no. 65, 167–177 | MR | Zbl

[17] Whiteley W., Infinitesimal rigid polyhedra. III: triangulated tori, Preprint J4P 3B8, Champlain Regional College, St. Lambert, Quebec, 1985