Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_2002_66_2_a4, author = {I. Kh. Sabitov}, title = {Algorithmic solution of the problem of isometric realization for two-dimensional polyhedral metrics}, journal = {Izvestiya. Mathematics }, pages = {377--391}, publisher = {mathdoc}, volume = {66}, number = {2}, year = {2002}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_2002_66_2_a4/} }
TY - JOUR AU - I. Kh. Sabitov TI - Algorithmic solution of the problem of isometric realization for two-dimensional polyhedral metrics JO - Izvestiya. Mathematics PY - 2002 SP - 377 EP - 391 VL - 66 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IM2_2002_66_2_a4/ LA - en ID - IM2_2002_66_2_a4 ER -
I. Kh. Sabitov. Algorithmic solution of the problem of isometric realization for two-dimensional polyhedral metrics. Izvestiya. Mathematics , Tome 66 (2002) no. 2, pp. 377-391. http://geodesic.mathdoc.fr/item/IM2_2002_66_2_a4/
[1] Aleksandrov A. D., Vypuklye mnogogranniki, Gostekhizdat, M.– L., 1950 | MR
[2] Astrelin A. V., Sabitov I. Kh., “Minimalnyi po stepeni mnogochlen dlya opredeleniya ob'ema oktaedra po ego metrike”, UMN, 50:5 (1992), 245–246 | MR
[3] Astrelin A. V., Sabitov I. Kh., “Kanonicheskii mnogochlen dlya ob'ema mnogogrannika”, UMN, 54:2 (1999), 165–166 | MR | Zbl
[4] Burago Yu. D., Zalgaller V. A., “Izometricheskie kusochno lineinye pogruzheniya dvumernykh mnogoobrazii s poliedralnoi metrikoi v $\mathbb R^3$”, Algebra i analiz, 7:3 (1995), 76–95 | MR | Zbl
[5] Sabitov I. Kh., “Algoritmicheskaya proverka izgibaemosti podvesok”, Ukr. geom. sb., 30 (1987), 109–112 | MR | Zbl
[6] Sabitov I. Kh., “K probleme ob invariantnosti ob'ema izgibaemogo mnogogrannika”, UMN, 50:2 (1995), 223–224 | MR | Zbl
[7] Sabitov I. Kh., “Ob'em mnogogrannika kak funktsiya ego metriki”, Fundam. i prikladn. matematika, 2:4 (1996), 1235–1246 | MR | Zbl
[8] Sabitov I. Kh., “Obobschennaya formula Gerona–Tartalya i nekotorye ee sledstviya”, Matem. sb., 189:10 (1998), 105–134 | MR | Zbl
[9] Sabitov I. Kh., “Reshenie mnogogrannikov”, Dokl. RAN, 377:2 (2001), 161–164 | MR | Zbl
[10] Sabitov I. Kh., “Nekotorye primeneniya formuly dlya ob'ema mnogogrannikov”, Tr. konferentsii “Geometriya i prilozheniya”, posvyaschennoi 70-letiyu V. A. Toponogova, Izd-vo Instituta matematiki SO RAN, Novosibirsk, 2001, 183–197 | MR | Zbl
[11] Blumental L. M., Theory and Applications of Distance Geometry, Chelsea, N. Y., 1970
[12] Gluck H., “Almost all simple connected closed sutfaces are rigid”, Lec. Notes in Math., 438 (1975), 225–239 | DOI | MR | Zbl
[13] Graver J., “Rigidity of triangulated surfaces”, Colloquium during the Special Semester on Structural Rigidity, Centre de recherches Mathématiques, Université de Monréal, 1987
[14] Fogelsanger A., The generic rigidity of minimal cycles, Preprint, Cornell University, 1987
[15] Sabitov I. Kh., “The Volume as a Metric Invariant of Polyhedra”, Discrete and Computat. Geometry, 20:4 (1998), 405–425 | DOI | MR | Zbl
[16] Sabitov I. Kh., “On some recent results in the metric theory of polyhedra”, Supplemento ai Rendiconti del Circolo Mat. di Palermo. Serie II, 2000, no. 65, 167–177 | MR | Zbl
[17] Whiteley W., Infinitesimal rigid polyhedra. III: triangulated tori, Preprint J4P 3B8, Champlain Regional College, St. Lambert, Quebec, 1985