Wavelet theory as $p$-adic spectral analysis
Izvestiya. Mathematics , Tome 66 (2002) no. 2, pp. 367-376.

Voir la notice de l'article provenant de la source Math-Net.Ru

We construct a new orthonormal basis of eigenfunctions of the Vladimirov $p$-adic fractional differentiation operator. We construct a map of the $p$-adic numbers onto the real numbers (the $p$-adic change of variables), which transforms the Haar measure on the $p$-adic numbers to the Lebesgue measure on the positive semi-axis. The $p$-adic change of variables (for $p=2$) provides an equivalence between the basis of eigenfunctions of the Vladimirov operator and the wavelet basis in $L^2({\mathbb R}_+)$ generated by the Haar wavelet. This means that wavelet theory can be regarded as $p$-adic spectral analysis.
@article{IM2_2002_66_2_a3,
     author = {S. V. Kozyrev},
     title = {Wavelet theory as $p$-adic spectral analysis},
     journal = {Izvestiya. Mathematics },
     pages = {367--376},
     publisher = {mathdoc},
     volume = {66},
     number = {2},
     year = {2002},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2002_66_2_a3/}
}
TY  - JOUR
AU  - S. V. Kozyrev
TI  - Wavelet theory as $p$-adic spectral analysis
JO  - Izvestiya. Mathematics 
PY  - 2002
SP  - 367
EP  - 376
VL  - 66
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2002_66_2_a3/
LA  - en
ID  - IM2_2002_66_2_a3
ER  - 
%0 Journal Article
%A S. V. Kozyrev
%T Wavelet theory as $p$-adic spectral analysis
%J Izvestiya. Mathematics 
%D 2002
%P 367-376
%V 66
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2002_66_2_a3/
%G en
%F IM2_2002_66_2_a3
S. V. Kozyrev. Wavelet theory as $p$-adic spectral analysis. Izvestiya. Mathematics , Tome 66 (2002) no. 2, pp. 367-376. http://geodesic.mathdoc.fr/item/IM2_2002_66_2_a3/

[1] Vladimirov V. S., Volovich I. V., Zelenov E. I., $p$-Adicheskii analiz i matematicheskaya fizika, Nauka, M., 1994 | MR

[2] Vladimirov V. S., “O spektrakh nekotorykh psevdodifferentsialnykh operatorov nad polem $p$-adicheskikh chisel”, Algebra i analiz, 2 (1990), 107–124 | MR | Zbl

[3] Kochubei A. N., “Additive and multiplicative fractional differentiations over the field of $p$-adic numbers”, $p$-adic Functional Analysis, Lect. Notes Pure Appl. Math., 192, Dekker, N. Y., 1997, 275–280 | MR | Zbl

[4] Vladimirov V. S., “O razvetvlennykh kharakterakh gruppy idelei odnoklassnykh kvadratichnykh polei”, Tr. MIAN, 224, Nauka, M., 1999, 122–129 | MR | Zbl

[5] Borevich Z. I., Shafarevich I. R., Teoriya chisel, Nauka, M., 1985 | MR | Zbl

[6] Vladimirov V. S., “Obobschennye funktsii nad polem $p$-adicheskikh chisel”, UMN, 43:5 (1989), 17–53

[7] Khrennikov A., $p$-adic valued distributions in mathematical physics, Kluwer Academic Publ, Dordrecht, 1994 | MR | Zbl

[8] Volovich I. V., “$p$-adic String”, Class. Quantum Gravity, 4 (1987), L83–L87 | DOI | MR

[9] Freund P. G. O., Olson M., “Nonarchimedean strings”, Phys. Lett. B, 199 (1987), 186 | DOI | MR

[10] Vladimirov V. S., Volovich I. V., “$p$-adic quantum mechanics”, Commun. Math. Phys., 123 (1989), 659–676 | DOI | MR | Zbl

[11] Aref'eva I. Ya., Dragovic B., Frampton P., Volovich I. V., “Wave function of the universe and $p$-adic gravity”, Mod. Phys. Lett. A, 6 (1991), 4341–4358 | MR | Zbl

[12] Avetisov V. A., Bikulov A. H., Kozyrev S. V., “Application of $p$-adic analysis to models of spontaneous breaking of replica symmetry”, J. Phys. A, 32 (1999), 8785–8791 ; http://xxx.lanl.gov/abs/cond-mat/9904360 | DOI | MR | Zbl

[13] Parisi G., Sourlas N., “$p$-adic numbers and replica symmetry breaking”, European Phys. J. B, 14 (2000), 535 | DOI | MR

[14] Carlucci D. M., De Dominicis C., On the replica Fourier transform, http://xxx.lanl.gov/abs/cond-mat/9709200

[15] De Dominicis C., Carlucci D. M., Temesvari T., “Replica Fourier transform on ultrametric trees and block diagonalizing of multireplica matrices”, J. Phys. I France, 7 (1997), 105–115 ; http://xxx.lanl.gov/abs/cond-mat/9703132 | DOI | MR

[16] Daubechies I., “Orthonormal bases of compactly supported wavelets”, Comm. Pure Appl. Math., 41 (1988), 906 | MR

[17] Daubechies I., “The wavelet transform, time frequency localization and signal analysis”, IEEE Trans. Inform. Theory, 36 (1990), 961 | DOI | MR | Zbl