Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_2002_66_2_a3, author = {S. V. Kozyrev}, title = {Wavelet theory as $p$-adic spectral analysis}, journal = {Izvestiya. Mathematics }, pages = {367--376}, publisher = {mathdoc}, volume = {66}, number = {2}, year = {2002}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_2002_66_2_a3/} }
S. V. Kozyrev. Wavelet theory as $p$-adic spectral analysis. Izvestiya. Mathematics , Tome 66 (2002) no. 2, pp. 367-376. http://geodesic.mathdoc.fr/item/IM2_2002_66_2_a3/
[1] Vladimirov V. S., Volovich I. V., Zelenov E. I., $p$-Adicheskii analiz i matematicheskaya fizika, Nauka, M., 1994 | MR
[2] Vladimirov V. S., “O spektrakh nekotorykh psevdodifferentsialnykh operatorov nad polem $p$-adicheskikh chisel”, Algebra i analiz, 2 (1990), 107–124 | MR | Zbl
[3] Kochubei A. N., “Additive and multiplicative fractional differentiations over the field of $p$-adic numbers”, $p$-adic Functional Analysis, Lect. Notes Pure Appl. Math., 192, Dekker, N. Y., 1997, 275–280 | MR | Zbl
[4] Vladimirov V. S., “O razvetvlennykh kharakterakh gruppy idelei odnoklassnykh kvadratichnykh polei”, Tr. MIAN, 224, Nauka, M., 1999, 122–129 | MR | Zbl
[5] Borevich Z. I., Shafarevich I. R., Teoriya chisel, Nauka, M., 1985 | MR | Zbl
[6] Vladimirov V. S., “Obobschennye funktsii nad polem $p$-adicheskikh chisel”, UMN, 43:5 (1989), 17–53
[7] Khrennikov A., $p$-adic valued distributions in mathematical physics, Kluwer Academic Publ, Dordrecht, 1994 | MR | Zbl
[8] Volovich I. V., “$p$-adic String”, Class. Quantum Gravity, 4 (1987), L83–L87 | DOI | MR
[9] Freund P. G. O., Olson M., “Nonarchimedean strings”, Phys. Lett. B, 199 (1987), 186 | DOI | MR
[10] Vladimirov V. S., Volovich I. V., “$p$-adic quantum mechanics”, Commun. Math. Phys., 123 (1989), 659–676 | DOI | MR | Zbl
[11] Aref'eva I. Ya., Dragovic B., Frampton P., Volovich I. V., “Wave function of the universe and $p$-adic gravity”, Mod. Phys. Lett. A, 6 (1991), 4341–4358 | MR | Zbl
[12] Avetisov V. A., Bikulov A. H., Kozyrev S. V., “Application of $p$-adic analysis to models of spontaneous breaking of replica symmetry”, J. Phys. A, 32 (1999), 8785–8791 ; http://xxx.lanl.gov/abs/cond-mat/9904360 | DOI | MR | Zbl
[13] Parisi G., Sourlas N., “$p$-adic numbers and replica symmetry breaking”, European Phys. J. B, 14 (2000), 535 | DOI | MR
[14] Carlucci D. M., De Dominicis C., On the replica Fourier transform, http://xxx.lanl.gov/abs/cond-mat/9709200
[15] De Dominicis C., Carlucci D. M., Temesvari T., “Replica Fourier transform on ultrametric trees and block diagonalizing of multireplica matrices”, J. Phys. I France, 7 (1997), 105–115 ; http://xxx.lanl.gov/abs/cond-mat/9703132 | DOI | MR
[16] Daubechies I., “Orthonormal bases of compactly supported wavelets”, Comm. Pure Appl. Math., 41 (1988), 906 | MR
[17] Daubechies I., “The wavelet transform, time frequency localization and signal analysis”, IEEE Trans. Inform. Theory, 36 (1990), 961 | DOI | MR | Zbl