Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_2002_66_2_a1, author = {V. N. Dubinin}, title = {On an application of conformal maps to inequalities for rational functions}, journal = {Izvestiya. Mathematics }, pages = {285--297}, publisher = {mathdoc}, volume = {66}, number = {2}, year = {2002}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_2002_66_2_a1/} }
V. N. Dubinin. On an application of conformal maps to inequalities for rational functions. Izvestiya. Mathematics , Tome 66 (2002) no. 2, pp. 285-297. http://geodesic.mathdoc.fr/item/IM2_2002_66_2_a1/
[1] Goluzin G. M., Geometricheskaya teoriya funktsii kompleksnogo peremennogo, Nauka, M., 1966 | MR
[2] Rusak V. N., Ratsionalnye funktsii kak apparat priblizheniya, Izd-vo BGU, Minsk, 1979 | MR
[3] Petrushev P. P., Popov V. A., Rational approximation of real functions, Cambridge University Press, Cambridge, 1987 | MR | Zbl
[4] Borwein P. B., Erdelyi T., Zhang J., “Chebyshev polynomials and Markov–Bernstein type inequalities for rational spaces”, J. London Math. Soc., 50 (1994), 501–519 | MR | Zbl
[5] Borwein P. B., Erdelyi T., Polynomials and polynomial inequalities, Springer-Verlag, N.Y., 1995 | MR
[6] Borwein P. B., Erdelyi T., “Sharp extensions of Bernstein's inequality to rational spaces”, Mathematika, 43:2 (1996), 413–423 | MR
[7] Li X., Mohapatra R. N., Rodriguez R. S., “Bernstein-type inequalities for rational functions with prescribed poles”, J. London Math. Soc., 51:3 (1995), 523–531 | MR | Zbl
[8] Jones R., Li X., Mohapatra R. N., Rodriguez R. S., “On the Bernstein inequality for rational functions with a prescribed zero”, J. Approximation Theory, 95:3 (1998), 476–496 | DOI | MR | Zbl
[9] Li X., “Integral formulas and inequalities for rational functions”, J. Math. Analysis and Appl., 211:2 (1997), 386–394 | DOI | MR | Zbl
[10] Aziz A., Shah W. M., “Some refinements of Bernstein-type inequalities for rational functions”, Glasnik Mat., 32(52):1 (1997), 29–37 | MR | Zbl
[11] Min G., “Inequalities for rational functions with prescribed poles”, Can. J. Math., 50:1 (1998), 152–166 | MR | Zbl
[12] Min G., “Inequalities for the derivatives of rational functions with real zeros”, Acta Math. Hungar., 82:1–2 (1999), 11–20 | DOI | MR | Zbl
[13] Lukashov A. L., “Neravenstvo tipa Bernshteina dlya proizvodnykh ratsionalnykh funktsii na dvukh otrezkakh”, Matem. zametki, 66:4 (1999), 508–514 | MR
[14] Bernshtein S. N., Sobranie sochinenii, T. 1, Izd-vo AN SSSR, M., 1952
[15] Videnskii V. S., “Nekotorye otsenki proizvodnykh ot ratsionalnykh drobei”, Izv. AN SSSR. Ser. matem., 26:3 (1962), 415–426 | MR | Zbl
[16] Turan P., “Über die ableitung von polynomen”, Compositio Math., 7 (1939), 89–95 | MR | Zbl
[17] Dubinin V. N., Kim V. Yu., “Privedennye moduli i neravenstva dlya polinomov”, Zapiski nauch. sem. POMI, 263, POMI, SPb., 2000, 70–83 | MR | Zbl