On an application of conformal maps to inequalities for rational functions
Izvestiya. Mathematics , Tome 66 (2002) no. 2, pp. 285-297.

Voir la notice de l'article provenant de la source Math-Net.Ru

Using classical properties of conformal maps, we get new exact inequalities for rational functions with prescribed poles. In particular, we prove a new Bernstein-type inequality, an inequality for Blaschke products and a theorem that generalizes the Turan inequality for polynomials. The estimates obtained strengthen some familiar inequalities of Videnskii and Rusak. They are also related to recent results of Borwein, Erdelyi, Li, Mohapatra, Rodriguez, Aziz and others.
@article{IM2_2002_66_2_a1,
     author = {V. N. Dubinin},
     title = {On an application of conformal maps to inequalities for rational functions},
     journal = {Izvestiya. Mathematics },
     pages = {285--297},
     publisher = {mathdoc},
     volume = {66},
     number = {2},
     year = {2002},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2002_66_2_a1/}
}
TY  - JOUR
AU  - V. N. Dubinin
TI  - On an application of conformal maps to inequalities for rational functions
JO  - Izvestiya. Mathematics 
PY  - 2002
SP  - 285
EP  - 297
VL  - 66
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2002_66_2_a1/
LA  - en
ID  - IM2_2002_66_2_a1
ER  - 
%0 Journal Article
%A V. N. Dubinin
%T On an application of conformal maps to inequalities for rational functions
%J Izvestiya. Mathematics 
%D 2002
%P 285-297
%V 66
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2002_66_2_a1/
%G en
%F IM2_2002_66_2_a1
V. N. Dubinin. On an application of conformal maps to inequalities for rational functions. Izvestiya. Mathematics , Tome 66 (2002) no. 2, pp. 285-297. http://geodesic.mathdoc.fr/item/IM2_2002_66_2_a1/

[1] Goluzin G. M., Geometricheskaya teoriya funktsii kompleksnogo peremennogo, Nauka, M., 1966 | MR

[2] Rusak V. N., Ratsionalnye funktsii kak apparat priblizheniya, Izd-vo BGU, Minsk, 1979 | MR

[3] Petrushev P. P., Popov V. A., Rational approximation of real functions, Cambridge University Press, Cambridge, 1987 | MR | Zbl

[4] Borwein P. B., Erdelyi T., Zhang J., “Chebyshev polynomials and Markov–Bernstein type inequalities for rational spaces”, J. London Math. Soc., 50 (1994), 501–519 | MR | Zbl

[5] Borwein P. B., Erdelyi T., Polynomials and polynomial inequalities, Springer-Verlag, N.Y., 1995 | MR

[6] Borwein P. B., Erdelyi T., “Sharp extensions of Bernstein's inequality to rational spaces”, Mathematika, 43:2 (1996), 413–423 | MR

[7] Li X., Mohapatra R. N., Rodriguez R. S., “Bernstein-type inequalities for rational functions with prescribed poles”, J. London Math. Soc., 51:3 (1995), 523–531 | MR | Zbl

[8] Jones R., Li X., Mohapatra R. N., Rodriguez R. S., “On the Bernstein inequality for rational functions with a prescribed zero”, J. Approximation Theory, 95:3 (1998), 476–496 | DOI | MR | Zbl

[9] Li X., “Integral formulas and inequalities for rational functions”, J. Math. Analysis and Appl., 211:2 (1997), 386–394 | DOI | MR | Zbl

[10] Aziz A., Shah W. M., “Some refinements of Bernstein-type inequalities for rational functions”, Glasnik Mat., 32(52):1 (1997), 29–37 | MR | Zbl

[11] Min G., “Inequalities for rational functions with prescribed poles”, Can. J. Math., 50:1 (1998), 152–166 | MR | Zbl

[12] Min G., “Inequalities for the derivatives of rational functions with real zeros”, Acta Math. Hungar., 82:1–2 (1999), 11–20 | DOI | MR | Zbl

[13] Lukashov A. L., “Neravenstvo tipa Bernshteina dlya proizvodnykh ratsionalnykh funktsii na dvukh otrezkakh”, Matem. zametki, 66:4 (1999), 508–514 | MR

[14] Bernshtein S. N., Sobranie sochinenii, T. 1, Izd-vo AN SSSR, M., 1952

[15] Videnskii V. S., “Nekotorye otsenki proizvodnykh ot ratsionalnykh drobei”, Izv. AN SSSR. Ser. matem., 26:3 (1962), 415–426 | MR | Zbl

[16] Turan P., “Über die ableitung von polynomen”, Compositio Math., 7 (1939), 89–95 | MR | Zbl

[17] Dubinin V. N., Kim V. Yu., “Privedennye moduli i neravenstva dlya polinomov”, Zapiski nauch. sem. POMI, 263, POMI, SPb., 2000, 70–83 | MR | Zbl