Structurally stable diffeomorphisms with basis sets of codimension one
Izvestiya. Mathematics , Tome 66 (2002) no. 2, pp. 223-284

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the topological and homotopical structure of closed $n$-dimensional manifolds ($n\geqslant 3$) on which there are structurally stable diffeomorphisms with orientable expanding attractors and contracting repellers of codimension one. The results obtained are applied to the topological classification of such diffeomorphisms on the $n$-dimensional torus $T^n$, $n\geqslant 3$.
@article{IM2_2002_66_2_a0,
     author = {V. Z. Grines and E. V. Zhuzhoma},
     title = {Structurally stable diffeomorphisms with basis sets of codimension one},
     journal = {Izvestiya. Mathematics },
     pages = {223--284},
     publisher = {mathdoc},
     volume = {66},
     number = {2},
     year = {2002},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2002_66_2_a0/}
}
TY  - JOUR
AU  - V. Z. Grines
AU  - E. V. Zhuzhoma
TI  - Structurally stable diffeomorphisms with basis sets of codimension one
JO  - Izvestiya. Mathematics 
PY  - 2002
SP  - 223
EP  - 284
VL  - 66
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2002_66_2_a0/
LA  - en
ID  - IM2_2002_66_2_a0
ER  - 
%0 Journal Article
%A V. Z. Grines
%A E. V. Zhuzhoma
%T Structurally stable diffeomorphisms with basis sets of codimension one
%J Izvestiya. Mathematics 
%D 2002
%P 223-284
%V 66
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2002_66_2_a0/
%G en
%F IM2_2002_66_2_a0
V. Z. Grines; E. V. Zhuzhoma. Structurally stable diffeomorphisms with basis sets of codimension one. Izvestiya. Mathematics , Tome 66 (2002) no. 2, pp. 223-284. http://geodesic.mathdoc.fr/item/IM2_2002_66_2_a0/