Lefschetz pencils, Morse functions, and Lagrangian embeddings of the Klein bottle
Izvestiya. Mathematics , Tome 66 (2002) no. 1, pp. 151-164.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is shown that the mod 2 homology class represented by a Lagrangian Klein bottle in a complex algebraic surface is non-zero. In particular, the Klein bottle does not admit a Lagrangian embedding into the standard symplectic four-space.
@article{IM2_2002_66_1_a6,
     author = {S. Yu. Nemirovski},
     title = {Lefschetz pencils, {Morse} functions, and {Lagrangian} embeddings of the {Klein} bottle},
     journal = {Izvestiya. Mathematics },
     pages = {151--164},
     publisher = {mathdoc},
     volume = {66},
     number = {1},
     year = {2002},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2002_66_1_a6/}
}
TY  - JOUR
AU  - S. Yu. Nemirovski
TI  - Lefschetz pencils, Morse functions, and Lagrangian embeddings of the Klein bottle
JO  - Izvestiya. Mathematics 
PY  - 2002
SP  - 151
EP  - 164
VL  - 66
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2002_66_1_a6/
LA  - en
ID  - IM2_2002_66_1_a6
ER  - 
%0 Journal Article
%A S. Yu. Nemirovski
%T Lefschetz pencils, Morse functions, and Lagrangian embeddings of the Klein bottle
%J Izvestiya. Mathematics 
%D 2002
%P 151-164
%V 66
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2002_66_1_a6/
%G en
%F IM2_2002_66_1_a6
S. Yu. Nemirovski. Lefschetz pencils, Morse functions, and Lagrangian embeddings of the Klein bottle. Izvestiya. Mathematics , Tome 66 (2002) no. 1, pp. 151-164. http://geodesic.mathdoc.fr/item/IM2_2002_66_1_a6/

[1] Arnol'd V. I., “Some remarks on symplectic monodromy of Milnor fibrations”, The Floer memorial volume, Progr. Math., 133, Birkhäuser, Basel, 1995, 99–103 | MR | Zbl

[2] Audin M., “Quelques remarques sur les surface lagrangiennes de Givental'”, J. Geom. Phys., 7 (1990), 583–598 | DOI | MR | Zbl

[3] Chekanov Yu., “Lagrangian tori in a symplectic vector space and global symplectomorphisms”, Math. Z., 223 (1996), 547–559 | DOI | MR | Zbl

[4] Donaldson S. K., “Lefschetz pencils on symplectic manifolds”, J. Diff. Geom., 53 (1999), 205–236 | MR | Zbl

[5] Donaldson S. K., “Polynomials, vanishing cycles and Floer homology”, Mathematics: frontiers and perspectives, Amer. Math. Soc., Providence, RI, 2000, 55–64 | MR | Zbl

[6] Duval J., “Convexité rationelle des surfaces lagrangiennes”, Invent. Math., 104 (1991), 581–599 | DOI | MR | Zbl

[7] Duval J., Sibony N., “Polynomial convexity, rational convexity, and currents”, Duke Math. J., 79 (1995), 487–513 | DOI | MR | Zbl

[8] Gayet D., “Convexité rationelle des sous-variétés immergées lagrangiennes”, Ann. Sci. École Norm. Sup. (4), 33 (2000), 291–300 | MR | Zbl

[9] Gatien D., Lalonde F., “Holomorphic cylinders with Lagrangian boundaries and Hamiltonian dynamics”, Duke Math. J., 102 (2000), 485–511 | DOI | MR | Zbl

[10] Givental A. B., “Lagranzhevy vlozheniya poverkhnostei i raskrytyi zontik Uitni”, Funktsion. analiz i ego prilozh., 20 (1986), 35–41 | MR | Zbl

[11] Guedj V., “Approximation of currents on complex manifolds”, Math. Ann., 313 (1999), 437–474 | DOI | MR | Zbl

[12] Gunning R. C., Rossi H., Analytic functions of several complex variables, Prentice-Hall, Englewood Cliffs, N.Y., 1965 | MR | Zbl

[13] Lalonde F., “Suppression lagrangienne de points doubles et rigidité symplectique”, J. Diff. Geom., 36 (1992), 747–764 | MR | Zbl

[14] Lamotke K., “The topology of complex projective varieties after S. Lefschetz”, Topology, 20 (1981), 15–51 | DOI | MR | Zbl

[15] Mohnke K., “Lagrangian embeddings and holomorphic discs in the complement of complex hypersurfaces”, Israel J. Math., 122 (2001), 117–123 | DOI | MR | Zbl

[16] Rudin W., “Totally real Klein bottles in $\mathbb C^2$”, Proc. Amer. Math. Soc., 82 (1981), 653–654 | DOI | MR | Zbl

[17] Seidel P., A long exact sequence for symplectic Floer cohomology, arXiv: math.SG/0105186 | MR

[18] Auroux D., Gayet D., Mohsen J.-P., “Symplectic hypersurfaces in the complement of an isotropic submanifold”, Math. Ann., 321 (2001), 739–754 | DOI | MR | Zbl