Lefschetz pencils, Morse functions, and Lagrangian embeddings of the Klein bottle
Izvestiya. Mathematics , Tome 66 (2002) no. 1, pp. 151-164

Voir la notice de l'article provenant de la source Math-Net.Ru

It is shown that the mod 2 homology class represented by a Lagrangian Klein bottle in a complex algebraic surface is non-zero. In particular, the Klein bottle does not admit a Lagrangian embedding into the standard symplectic four-space.
@article{IM2_2002_66_1_a6,
     author = {S. Yu. Nemirovski},
     title = {Lefschetz pencils, {Morse} functions, and {Lagrangian} embeddings of the {Klein} bottle},
     journal = {Izvestiya. Mathematics },
     pages = {151--164},
     publisher = {mathdoc},
     volume = {66},
     number = {1},
     year = {2002},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2002_66_1_a6/}
}
TY  - JOUR
AU  - S. Yu. Nemirovski
TI  - Lefschetz pencils, Morse functions, and Lagrangian embeddings of the Klein bottle
JO  - Izvestiya. Mathematics 
PY  - 2002
SP  - 151
EP  - 164
VL  - 66
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2002_66_1_a6/
LA  - en
ID  - IM2_2002_66_1_a6
ER  - 
%0 Journal Article
%A S. Yu. Nemirovski
%T Lefschetz pencils, Morse functions, and Lagrangian embeddings of the Klein bottle
%J Izvestiya. Mathematics 
%D 2002
%P 151-164
%V 66
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2002_66_1_a6/
%G en
%F IM2_2002_66_1_a6
S. Yu. Nemirovski. Lefschetz pencils, Morse functions, and Lagrangian embeddings of the Klein bottle. Izvestiya. Mathematics , Tome 66 (2002) no. 1, pp. 151-164. http://geodesic.mathdoc.fr/item/IM2_2002_66_1_a6/