On the discrete spectrum of Hamiltonians for pseudo-relativistic electrons
Izvestiya. Mathematics , Tome 66 (2002) no. 1, pp. 71-102.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the Hamiltonian $H$ of a system of $n$ pseudo-relativistic electrons in a Coulomb field of $n_0$ fixed nuclei. Under the assumption that the total charge of electrons and nuclei is non-negative, it is proved that the discrete spectrum of $H$ is infinite, and a spectral asymptotic formula is derived (without taking the Pauli exclusion principle into account). The results are extended to systems of the same type with long-range potentials more general than Coulomb potentials. It is also proved that the discrete spectrum is finite in the short-range case.
@article{IM2_2002_66_1_a3,
     author = {G. M. Zhislin and S. A. Vugal'ter},
     title = {On the discrete spectrum of {Hamiltonians} for pseudo-relativistic electrons},
     journal = {Izvestiya. Mathematics },
     pages = {71--102},
     publisher = {mathdoc},
     volume = {66},
     number = {1},
     year = {2002},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2002_66_1_a3/}
}
TY  - JOUR
AU  - G. M. Zhislin
AU  - S. A. Vugal'ter
TI  - On the discrete spectrum of Hamiltonians for pseudo-relativistic electrons
JO  - Izvestiya. Mathematics 
PY  - 2002
SP  - 71
EP  - 102
VL  - 66
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2002_66_1_a3/
LA  - en
ID  - IM2_2002_66_1_a3
ER  - 
%0 Journal Article
%A G. M. Zhislin
%A S. A. Vugal'ter
%T On the discrete spectrum of Hamiltonians for pseudo-relativistic electrons
%J Izvestiya. Mathematics 
%D 2002
%P 71-102
%V 66
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2002_66_1_a3/
%G en
%F IM2_2002_66_1_a3
G. M. Zhislin; S. A. Vugal'ter. On the discrete spectrum of Hamiltonians for pseudo-relativistic electrons. Izvestiya. Mathematics , Tome 66 (2002) no. 1, pp. 71-102. http://geodesic.mathdoc.fr/item/IM2_2002_66_1_a3/

[1] Lieb E., Yau H.-T., “The Stability and Instability of relativistic Matter”, CMP, 118 (1988), 177–213 | DOI | MR | Zbl

[2] Lewis R. T., Siedentop H., Vugalter S., “The essential spectrum of relativistic multi-particle operators”, Ann. Inst. Henri Poincare. Ph. Th., 67:1 (1997), 1–28 | MR | Zbl

[3] Vugalter S. A., Zhislin G. M., “Diskretnyi spektr mnogochastichnykh psevdorelyativistskikh gamiltonianov”, Funkts. analiz i ego prilozh., 32:2 (1998), 83–86 | MR | Zbl

[4] Zhislin G. M., Vugalter S. A., “Spektralnye svoistva psevdorelyativistskoi sistemy dvukh chastits s konechnymi massami”, TMF, 121:2 (1999), 297–306 | MR | Zbl

[5] Vugalter S. A., Zhislin G. M., “Ob asimptotike diskretnogo spektra zadannoi simmetrii mnogochastichnykh gamiltonianov”, Tr. MMO, no. 54, URSS, M., 1991, 187–213

[6] Antonets M. A., Zhislin G. M., Shereshevskii I. A., “O diskretnom spektre mnogochastichnykh gamiltonianov”, V kn.: K. Iorgens, I. Vaidmann, Spektralnye svoistva gamiltonovykh operatorov, Mir, M., 1976 | MR

[7] Carmona R., Masters W. C., Simon B., “Relativistic Schrodinger operators: asymptotic behavior of the eigenfunctions”, J. Func. Anal., 91:1 (1990), 117–142 | DOI | MR | Zbl

[8] Zhislin G. M., “Ob uzlakh sobstvennykh funktsii operatora Shrëdingera”, UMN, 14:1 (1961), 149–152 | MR

[9] Beitmen G., Erdeii A., Vysshie transtsendentnye funktsii. T. 2. SMB, Nauka, M., 1974