The first main theorem on complements: from global to local
Izvestiya. Mathematics , Tome 65 (2001) no. 6, pp. 1169-1196

Voir la notice de l'article provenant de la source Math-Net.Ru

The purpose of this paper is to explain and generalize the methods of [24] (see also [18] and [19]). We establish that for local Fano contractions the existence of complements can be reduced to the existence of complements for projective Fano varieties of smaller dimension.
@article{IM2_2001_65_6_a3,
     author = {Yu. G. Prokhorov and V. V. Shokurov},
     title = {The first main theorem on complements: from global to local},
     journal = {Izvestiya. Mathematics },
     pages = {1169--1196},
     publisher = {mathdoc},
     volume = {65},
     number = {6},
     year = {2001},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2001_65_6_a3/}
}
TY  - JOUR
AU  - Yu. G. Prokhorov
AU  - V. V. Shokurov
TI  - The first main theorem on complements: from global to local
JO  - Izvestiya. Mathematics 
PY  - 2001
SP  - 1169
EP  - 1196
VL  - 65
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2001_65_6_a3/
LA  - en
ID  - IM2_2001_65_6_a3
ER  - 
%0 Journal Article
%A Yu. G. Prokhorov
%A V. V. Shokurov
%T The first main theorem on complements: from global to local
%J Izvestiya. Mathematics 
%D 2001
%P 1169-1196
%V 65
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2001_65_6_a3/
%G en
%F IM2_2001_65_6_a3
Yu. G. Prokhorov; V. V. Shokurov. The first main theorem on complements: from global to local. Izvestiya. Mathematics , Tome 65 (2001) no. 6, pp. 1169-1196. http://geodesic.mathdoc.fr/item/IM2_2001_65_6_a3/