Asymptotic solutions of Hartree equations concentrated near low-dimensional submanifolds.~II. Localization in planar discs
Izvestiya. Mathematics , Tome 65 (2001) no. 6, pp. 1127-1168.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the eigenvalue problem for the three-dimensional Hartree equation in an external field and construct asymptotic (quasi-classical) solutions concentrated near two-dimensional planar discs. The rate of decrease of these solutions along the normal to the disc is determined by the Bogolyubov polaron, and near the edge of the disc it is defined by the Airy analogue of the polaron. To find the related series of eigenvalues, an analogue of the Bohr–Sommerfeld quantization rule is found from which is derived a simpler algebraic equation determining the main terms in the asymptotics of the eigenvalues.
@article{IM2_2001_65_6_a2,
     author = {M. V. Karasev and A. V. Pereskokov},
     title = {Asymptotic solutions of {Hartree} equations concentrated near low-dimensional {submanifolds.~II.} {Localization} in planar discs},
     journal = {Izvestiya. Mathematics },
     pages = {1127--1168},
     publisher = {mathdoc},
     volume = {65},
     number = {6},
     year = {2001},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2001_65_6_a2/}
}
TY  - JOUR
AU  - M. V. Karasev
AU  - A. V. Pereskokov
TI  - Asymptotic solutions of Hartree equations concentrated near low-dimensional submanifolds.~II. Localization in planar discs
JO  - Izvestiya. Mathematics 
PY  - 2001
SP  - 1127
EP  - 1168
VL  - 65
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2001_65_6_a2/
LA  - en
ID  - IM2_2001_65_6_a2
ER  - 
%0 Journal Article
%A M. V. Karasev
%A A. V. Pereskokov
%T Asymptotic solutions of Hartree equations concentrated near low-dimensional submanifolds.~II. Localization in planar discs
%J Izvestiya. Mathematics 
%D 2001
%P 1127-1168
%V 65
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2001_65_6_a2/
%G en
%F IM2_2001_65_6_a2
M. V. Karasev; A. V. Pereskokov. Asymptotic solutions of Hartree equations concentrated near low-dimensional submanifolds.~II. Localization in planar discs. Izvestiya. Mathematics , Tome 65 (2001) no. 6, pp. 1127-1168. http://geodesic.mathdoc.fr/item/IM2_2001_65_6_a2/

[1] Karasev M. V., Pereskokov A. V., “Asimptoticheskie resheniya uravnenii Khartri, sosredotochennye vblizi malomernykh podmnogoobrazii. I: Model s logarifmicheskoi osobennostyu”, Izv. RAN. Ser. matem., 65:5 (2001), 33–72 | MR | Zbl

[2] Karasev M. V., Maslov V. P., “Algebry s obschimi perestanovochnymi sootnosheniyami i ikh prilozheniya. II: Operatornye unitarno-nelineinye uravneniya”, Sovrem. probl. matematiki, 13, VINITI, M., 1979, 145–267 | MR

[3] Karasev M. V., Pereskokov A. V., “Logarifmicheskie popravki v pravile kvantovaniya. Spektr polyarona”, TMF, 97:1 (1993), 78–93 | MR

[4] Karasev M. V., Osipov Yu. V., “Sobstvennye funktsii uravneniya Khartri–Foka, ne obladayuschie sfericheskoi simmetriei”, TMF, 52:2 (1982), 263–269 | MR

[5] Karasev M. V., Kvantovaya reduktsiya na orbity algebr simmetrii i zadacha Erenfesta, Preprint ITF-87-157R, ITF AN SSSR, Kiev, 1987 | MR

[6] Gabdullin R. R., Malomernaya approksimatsiya reshenii uravneniya polyarona Pekara, Preprint, NTsBI AN SSSR, Puschino, 1991

[7] Beitmen G., Erdeii A., Vysshie transtsendentnye funktsii, T. 3, Nauka, M., 1967 | MR

[8] Ilin A. M., Soglasovanie asimptoticheskikh razlozhenii reshenii kraevykh zadach, Nauka, M., 1989 | MR

[9] Aleksandrov V. M., Mkhitaryan S. M., Kontaktnye zadachi dlya tel s tonkimi pokrytiyami i prosloikami, Nauka, M., 1983 | MR

[10] Spravochnik po spetsialnym funktsiyam s formulami, grafikami i matematicheskimi tablitsami, eds. Abramovits M., Stigan I., Nauka, M., 1979 | MR