Finite-dimensional dynamics on attractors of non-linear parabolic equations
Izvestiya. Mathematics , Tome 65 (2001) no. 5, pp. 977-1001

Voir la notice de l'article provenant de la source Math-Net.Ru

We show that one-dimensional semilinear second-order parabolic equations have finite-dimensional dynamics on attractors. In particular, this is true for reaction-diffusion equations with convection on $(0,1)$. We obtain new topological criteria for a class of dissipative equations of parabolic type in Banach spaces to have finite-dimensional dynamics on invariant compact sets. The dynamics of these equations on an attractor $\mathcal A$ is finite-dimensional (can be described by an ordinary differential equation) if $\mathcal A$ can be embedded in a finite-dimensional $C^1$-submanifold of the phase space.
@article{IM2_2001_65_5_a4,
     author = {A. V. Romanov},
     title = {Finite-dimensional dynamics on attractors of non-linear parabolic equations},
     journal = {Izvestiya. Mathematics },
     pages = {977--1001},
     publisher = {mathdoc},
     volume = {65},
     number = {5},
     year = {2001},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2001_65_5_a4/}
}
TY  - JOUR
AU  - A. V. Romanov
TI  - Finite-dimensional dynamics on attractors of non-linear parabolic equations
JO  - Izvestiya. Mathematics 
PY  - 2001
SP  - 977
EP  - 1001
VL  - 65
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2001_65_5_a4/
LA  - en
ID  - IM2_2001_65_5_a4
ER  - 
%0 Journal Article
%A A. V. Romanov
%T Finite-dimensional dynamics on attractors of non-linear parabolic equations
%J Izvestiya. Mathematics 
%D 2001
%P 977-1001
%V 65
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2001_65_5_a4/
%G en
%F IM2_2001_65_5_a4
A. V. Romanov. Finite-dimensional dynamics on attractors of non-linear parabolic equations. Izvestiya. Mathematics , Tome 65 (2001) no. 5, pp. 977-1001. http://geodesic.mathdoc.fr/item/IM2_2001_65_5_a4/