Finite-dimensional dynamics on attractors of non-linear parabolic equations
Izvestiya. Mathematics , Tome 65 (2001) no. 5, pp. 977-1001.

Voir la notice de l'article provenant de la source Math-Net.Ru

We show that one-dimensional semilinear second-order parabolic equations have finite-dimensional dynamics on attractors. In particular, this is true for reaction-diffusion equations with convection on $(0,1)$. We obtain new topological criteria for a class of dissipative equations of parabolic type in Banach spaces to have finite-dimensional dynamics on invariant compact sets. The dynamics of these equations on an attractor $\mathcal A$ is finite-dimensional (can be described by an ordinary differential equation) if $\mathcal A$ can be embedded in a finite-dimensional $C^1$-submanifold of the phase space.
@article{IM2_2001_65_5_a4,
     author = {A. V. Romanov},
     title = {Finite-dimensional dynamics on attractors of non-linear parabolic equations},
     journal = {Izvestiya. Mathematics },
     pages = {977--1001},
     publisher = {mathdoc},
     volume = {65},
     number = {5},
     year = {2001},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2001_65_5_a4/}
}
TY  - JOUR
AU  - A. V. Romanov
TI  - Finite-dimensional dynamics on attractors of non-linear parabolic equations
JO  - Izvestiya. Mathematics 
PY  - 2001
SP  - 977
EP  - 1001
VL  - 65
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2001_65_5_a4/
LA  - en
ID  - IM2_2001_65_5_a4
ER  - 
%0 Journal Article
%A A. V. Romanov
%T Finite-dimensional dynamics on attractors of non-linear parabolic equations
%J Izvestiya. Mathematics 
%D 2001
%P 977-1001
%V 65
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2001_65_5_a4/
%G en
%F IM2_2001_65_5_a4
A. V. Romanov. Finite-dimensional dynamics on attractors of non-linear parabolic equations. Izvestiya. Mathematics , Tome 65 (2001) no. 5, pp. 977-1001. http://geodesic.mathdoc.fr/item/IM2_2001_65_5_a4/

[1] Romanov A. V., “Konechnomernaya predelnaya dinamika dissipativnykh parabolicheskikh uravnenii”, Matem. sb., 191:3 (2000), 99–112 | MR | Zbl

[2] Khenri D., Geometricheskaya teoriya polulineinykh parabolicheskikh uravnenii, Mir, M., 1985 | MR

[3] Hopf E., “A mathematical example displaing features of turbulence”, Comm. Pure Appl. Math., 1:4 (1948), 303–322 | DOI | MR | Zbl

[4] Foias C., Prodi G., “Sur le comportement global des solutions non-stationnaires des equations de Navier–Stokes en dimension 2”, Rend. Semin. Mat. Univ. Padova, 39 (1967), 1–34 | MR | Zbl

[5] Ladyzhenskaya O. A., “O dinamicheskoi sisteme, porozhdaemoi uravneniyami Nave–Stoksa”, Zapiski nauch. sem. LOMI, 27, Nauka, L., 1972, 91–115 | MR | Zbl

[6] Mallet-Paret J., “Negatively invariant sets of compact maps and an extension of a theorem of Cartwright”, J. Differ. Equat., 22:2 (1976), 331–348 | DOI | MR | Zbl

[7] Mane R., “On the dimension of the compact invariant sets of certain non-linear maps”, Lecture Notes in Math., 898, Springer-Verlag, N. Y., 1981, 230–242 | MR

[8] Ladyzhenskaya O. A., “O nakhozhdenii minimalnykh globalnykh attraktorov dlya uravnenii Nave–Stoksa i drugikh uravnenii s chastnymi proizvodnymi”, UMN, 42:6 (1987), 25–60 | MR | Zbl

[9] Babin A. V., Vishik M. I., Attraktory evolyutsionnykh uravnenii, Nauka, M., 1989 | MR | Zbl

[10] Temam R., Infinite-dimensional dynamical systems in mechanics and physics, 2-nd ed., Springer-Verlag, N.Y., 1997 | MR

[11] Chueshov I. D., “Teoriya funktsionalov, odnoznachno opredelyayuschikh asimptoticheskuyu dinamiku beskonechnomernykh dissipativnykh sistem”, UMN, 53:4 (1998), 77–125 | MR

[12] Mane R., “Reduction semilinear parabolic equations to finite dimensional $C^1$ flows”, Lecture Notes in Math., 597, Springer-Verlag, N. Y., 1977, 361–378 | MR

[13] Romanov A. V., “Tochnye otsenki razmernosti inertsialnykh mnogoobrazii dlya nelineinykh parabolicheskikh uravnenii”, Izv. RAN. Ser. matem., 57:4 (1993), 36–54 | MR | Zbl

[14] Romanov A. V., “Tri kontrprimera v teorii inertsialnykh mnogoobrazii”, Matem. zametki, 68:3 (2000), 439–447 | MR | Zbl

[15] Kamaev D. A., “Semeistva ustoichivykh mnogoobrazii odnomernykh parabolicheskikh uravnenii”, Matem. zametki, 60:1 (1996), 11–23 | MR | Zbl

[16] Kamaev D. A., “Semeistva ustoichivykh mnogoobrazii invariantnykh mnozhestv sistem parabolicheskikh uravnenii”, UMN, 47:5 (1992), 179–180 | MR | Zbl

[17] Brunovsky P., Terescak I., “Regularity of invariant manifolds”, J. Dyn. Differ. Equat., 3:3 (1991), 313–337 | DOI | MR | Zbl

[18] Borisovich Yu. G., Bliznyakov N. M., Izrailevich Ya. A., Fomenko T. N., Vvedenie v topologiyu, 2-e izd. (dop.), Nauka, M., 1995 | MR | Zbl

[19] Danford N., Shvarts Dzh. T., Lineinye operatory. T. 3. Spektralnye operatory, Mir, M., 1974

[20] Romanov A. V., “Konechnomernost dinamiki na attraktore dlya polulineinykh parabolicheskikh uravnenii”, Optimalnoe upravlenie i dobavleniya, Mezhdunarodnaya konferentsiya, posvyaschennaya 90-letiyu so dnya rozhdeniya L. S. Pontryagina. Tezisy dokladov, Izd-vo MGU, M., 1998, 324–325

[21] Yorke J. A., “Periods of periodic solutions and the Lipschitz constant”, Proc. Amer. Math. Soc., 22:2 (1969), 509–512 | DOI | MR | Zbl

[22] Tribel Kh., Teoriya funktsionalnykh prostranstv, Mir, M., 1986 | MR | Zbl

[23] Tribel Kh., Teoriya interpolyatsii, funktsionalnye prostranstva, differentsialnye operatory, Mir, M., 1980 | MR

[24] Funktsionalnyi analiz. Spravochnaya matematicheskaya biblioteka, ed. S. G. Krein, Nauka, M., 1973

[25] Levitan B. M., Sargsyan I. S., Vvedenie v spektralnuyu teoriyu, Nauka, M., 1970 | MR | Zbl

[26] Ladyzhenskaya O. A., Solonnikov V. A., Uraltseva N. N., Lineinye i kvazilineinye uravneniya parabolicheskogo tipa, Nauka, M., 1967

[27] Amann H., “Global existence for semilinear parabolic systems”, J. Reine Angew. Math., 360 (1985), 47–83 | MR | Zbl

[28] Hoshino H., Yamada Y., “Solvability and smoothing effect for semilinear parabolic equations”, Funkc. Ekv., 34:3 (1991), 475–494 | MR | Zbl

[29] Khille E., Fillips R., Funktsionalnyi analiz i polugruppy, IL, M., 1962