Krichever correspondence for algebraic varieties
Izvestiya. Mathematics , Tome 65 (2001) no. 5, pp. 941-975

Voir la notice de l'article provenant de la source Math-Net.Ru

We construct new acyclic resolutions of quasicoherent sheaves. These resolutions are connected with multidimensional local fields. The resolutions obtained are applied to construct a generalization of the Krichever map to algebraic varieties of any dimension. This map canonically produces two $k$-subspaces $B\subset k((z_1))\dots((z_n))$ and $W\subset k((z_1))\dots((z_n))^{\oplus r}$ from the following data: an arbitrary algebraic $n$-dimensional Cohen–Macaulay projective integral scheme $X$ over a field $k$, a flag of closed integral subschemes $X=Y_0 \supset Y_1 \supset\dots\supset Y_n$ such that $Y_i$ is an ample Cartier divisor on $Y_{i-1}$ and $Y_n$ is a smooth point on all $Y_i$, formal local parameters of this flag at the point $Y_n$, a rank $r$ vector bundle $\mathscr F$ on $X$, and a trivialization of $\mathscr F$ in the formal neighbourhood of the point $Y_n$ where the $n$-dimensional local field $B\subset k((z_1))\dots((z_n))$ is associated with the flag $Y_0\supset Y_1\supset\dots\supset Y_n$. In addition, the map constructed is injective, that is, one can uniquely reconstruct all the original geometric data. Moreover, given the subspace $B$, we can explicitly write down a complex which calculates the cohomology of the sheaf $\mathscr O_X$ on $X$ and, given the subspace $W$, we can explicitly write down a complex which calculates the cohomology of $\mathscr F$ on $X$.
@article{IM2_2001_65_5_a3,
     author = {D. V. Osipov},
     title = {Krichever correspondence for algebraic varieties},
     journal = {Izvestiya. Mathematics },
     pages = {941--975},
     publisher = {mathdoc},
     volume = {65},
     number = {5},
     year = {2001},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2001_65_5_a3/}
}
TY  - JOUR
AU  - D. V. Osipov
TI  - Krichever correspondence for algebraic varieties
JO  - Izvestiya. Mathematics 
PY  - 2001
SP  - 941
EP  - 975
VL  - 65
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2001_65_5_a3/
LA  - en
ID  - IM2_2001_65_5_a3
ER  - 
%0 Journal Article
%A D. V. Osipov
%T Krichever correspondence for algebraic varieties
%J Izvestiya. Mathematics 
%D 2001
%P 941-975
%V 65
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2001_65_5_a3/
%G en
%F IM2_2001_65_5_a3
D. V. Osipov. Krichever correspondence for algebraic varieties. Izvestiya. Mathematics , Tome 65 (2001) no. 5, pp. 941-975. http://geodesic.mathdoc.fr/item/IM2_2001_65_5_a3/