Best quadrature formulae on Hardy--Sobolev classes
Izvestiya. Mathematics , Tome 65 (2001) no. 5, pp. 923-939
Voir la notice de l'article provenant de la source Math-Net.Ru
For functions in the Hardy–Sobolev class $H_\infty^r$, which is defined as the set of functions analytic in the unit disc and satisfying $f^{(r)}(z)|\leqslant 1$, we construct best quadrature formulae that use the values of the functions and their derivatives on a given system of points in the interval $(-1,1)$. For the periodic Hardy–Sobolev class $H_{\infty,\beta}^r$, which is defined as the set of $2\pi$-periodic functions analytic in the strip $|\operatorname{Im}z|\beta$ and satisfying $|f^{(r)}(z)|\leqslant 1$, we prove that the rectangle rule is the best for an equidistant system of points, and we calculate the error in
this formula. We construct best quadrature formulae on the class $H_{p,\beta}$, which is defined similarly to $H_{\infty,\beta}$, except that the boundary values of functions are taken in the $L_p$-norm. We also construct an optimal method for recovering functions in $H_p^r$ from the Taylor information $f(0),f'(0),\dots,f^{(n+r-1)}(0)$.
@article{IM2_2001_65_5_a2,
author = {K. Yu. Osipenko},
title = {Best quadrature formulae on {Hardy--Sobolev} classes},
journal = {Izvestiya. Mathematics },
pages = {923--939},
publisher = {mathdoc},
volume = {65},
number = {5},
year = {2001},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_2001_65_5_a2/}
}
K. Yu. Osipenko. Best quadrature formulae on Hardy--Sobolev classes. Izvestiya. Mathematics , Tome 65 (2001) no. 5, pp. 923-939. http://geodesic.mathdoc.fr/item/IM2_2001_65_5_a2/