Best quadrature formulae on Hardy--Sobolev classes
Izvestiya. Mathematics , Tome 65 (2001) no. 5, pp. 923-939.

Voir la notice de l'article provenant de la source Math-Net.Ru

For functions in the Hardy–Sobolev class $H_\infty^r$, which is defined as the set of functions analytic in the unit disc and satisfying $f^{(r)}(z)|\leqslant 1$, we construct best quadrature formulae that use the values of the functions and their derivatives on a given system of points in the interval $(-1,1)$. For the periodic Hardy–Sobolev class $H_{\infty,\beta}^r$, which is defined as the set of $2\pi$-periodic functions analytic in the strip $|\operatorname{Im}z|\beta$ and satisfying $|f^{(r)}(z)|\leqslant 1$, we prove that the rectangle rule is the best for an equidistant system of points, and we calculate the error in this formula. We construct best quadrature formulae on the class $H_{p,\beta}$, which is defined similarly to $H_{\infty,\beta}$, except that the boundary values of functions are taken in the $L_p$-norm. We also construct an optimal method for recovering functions in $H_p^r$ from the Taylor information $f(0),f'(0),\dots,f^{(n+r-1)}(0)$.
@article{IM2_2001_65_5_a2,
     author = {K. Yu. Osipenko},
     title = {Best quadrature formulae on {Hardy--Sobolev} classes},
     journal = {Izvestiya. Mathematics },
     pages = {923--939},
     publisher = {mathdoc},
     volume = {65},
     number = {5},
     year = {2001},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2001_65_5_a2/}
}
TY  - JOUR
AU  - K. Yu. Osipenko
TI  - Best quadrature formulae on Hardy--Sobolev classes
JO  - Izvestiya. Mathematics 
PY  - 2001
SP  - 923
EP  - 939
VL  - 65
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2001_65_5_a2/
LA  - en
ID  - IM2_2001_65_5_a2
ER  - 
%0 Journal Article
%A K. Yu. Osipenko
%T Best quadrature formulae on Hardy--Sobolev classes
%J Izvestiya. Mathematics 
%D 2001
%P 923-939
%V 65
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2001_65_5_a2/
%G en
%F IM2_2001_65_5_a2
K. Yu. Osipenko. Best quadrature formulae on Hardy--Sobolev classes. Izvestiya. Mathematics , Tome 65 (2001) no. 5, pp. 923-939. http://geodesic.mathdoc.fr/item/IM2_2001_65_5_a2/

[1] Smolyak S. A., Ob optimalnom vosstanovlenii funktsii i funktsionalov ot nikh, Dis. ...kand. fiz.-matem. nauk, Izd-vo MGU, M., 1965

[2] Micchelli C. A., Rivlin T. J., “A survey of optimal recovery”, Optimal Estimation in Approximation Theory, eds. C. A. Micchelli, T. J. Rivlin, Plenum Press, N.Y., 1977, 1–54 | MR

[3] Micchelli C. A., Rivlin T. J., “Lectures on Optimal Recovery”, Lecture Notes in Math., 1129, Springer-Verlag, Berlin, 1985, 21–93 | MR

[4] Arestov V. V., “Nailuchshee vosstanovlenie operatorov i rodstvennye zadachi”, Tr. Matem. in-ta im. V. A. Steklova AN SSSR, 189 (1989), 3–20 | MR

[5] Magaril-Ilyaev G. G., Osipenko K. Yu., “Ob optimalnom vosstanovlenii funktsionalov po netochnym dannym”, Matem. zametki, 50:6 (1991), 85–93 | MR

[6] Osipenko K. Yu., “Nailuchshee priblizhenie analiticheskikh funktsii po informatsii ob ikh znacheniyakh v konechnom chisle tochek”, Matem. zametki, 19:1 (1976), 29–40 | MR | Zbl

[7] Osipenko K. Yu., “Ob optimalnykh metodakh vosstanovleniya v prostranstvakh Khardi–Soboleva”, Matem. sb., 192:2 (2001), 67–86 | MR | Zbl

[8] Bojanov B. D., “Best quadrature formula for a certain class of analytic functions”, Zastos. Mat., 14 (1974), 441–447 | MR | Zbl

[9] Osipenko K. Yu., “O nailuchshikh i optimalnykh kvadraturnykh formulakh na klassakh ogranichennykh analiticheskikh funktsii”, Izv. AN SSSR. Ser. matem., 52:1 (1988), 79–99 | MR | Zbl

[10] Osipenko K. Yu., “Ob $n$-poperechnikakh, optimalnykh kvadraturnykh formulakh i optimalnom vosstanovlenii funktsii, analiticheskikh v polose”, Izv. RAN. Ser. matem., 58:4 (1994), 55–79 | MR | Zbl

[11] Osipenko K. Yu., Optimal Recovery of Analytic Functions, Nova Science Publ., Inc., Huntington–N. Y., 2000

[12] Osipenko K. Yu., “Optimalnaya interpolyatsiya analiticheskikh funktsii”, Matem. zametki, 12:4 (1972), 465–476 | MR | Zbl

[13] Fisher S. D., Micchelli C. A., “The $n$-width of sets of analytic functions”, Duke Math., 47:4 (1980), 789–801 | DOI | MR | Zbl

[14] Farkov Yu. A., “The $N$-widths of Hardy–Sobolev spaces of several complex variables”, J. Approx. Theory, 75:2 (1993), 183–197 | DOI | MR | Zbl

[15] Fisher S. D., “Envelopes, widths, and Landau problems for analytic functions”, Constr. Approx., 5:2 (1989), 171–187 | DOI | MR | Zbl

[16] Motornyi V. P., “O nailuchshei kvadraturnoi formule vida $\sum_{i=1}^np_if(x_i)$ dlya nekotorykh klassov periodicheskikh differentsiruemykh funktsii”, Izv. AN SSSR. Ser. matem., 38:3 (1974), 583–614 | MR | Zbl

[17] Nikolskii S. M., Kvadraturnye formuly, Nauka, M, 1979 | MR

[18] Osipenko K. Yu., Wilderotter K., “Optimal information for approximating periodic functions”, Math. Comput., 66:220 (1997), 1579–1592 | DOI | MR | Zbl

[19] Osipenko K. Yu., “Exact values of $n$-widths of Hardy–Sobolev classes”, Constr. Approx., 13 (1997), 17–27 | DOI | MR | Zbl

[20] Akhiezer N. I., Elementy teorii ellipticheskikh funktsii, Nauka, M., 1970 | MR | Zbl

[21] Wilderotter K., “Optimal approximation of periodic analytic functions with integrable boundary values”, J. Approx. Theory, 84:2 (1996), 236–246 | DOI | MR | Zbl