Best quadrature formulae on Hardy--Sobolev classes
Izvestiya. Mathematics , Tome 65 (2001) no. 5, pp. 923-939

Voir la notice de l'article provenant de la source Math-Net.Ru

For functions in the Hardy–Sobolev class $H_\infty^r$, which is defined as the set of functions analytic in the unit disc and satisfying $f^{(r)}(z)|\leqslant 1$, we construct best quadrature formulae that use the values of the functions and their derivatives on a given system of points in the interval $(-1,1)$. For the periodic Hardy–Sobolev class $H_{\infty,\beta}^r$, which is defined as the set of $2\pi$-periodic functions analytic in the strip $|\operatorname{Im}z|\beta$ and satisfying $|f^{(r)}(z)|\leqslant 1$, we prove that the rectangle rule is the best for an equidistant system of points, and we calculate the error in this formula. We construct best quadrature formulae on the class $H_{p,\beta}$, which is defined similarly to $H_{\infty,\beta}$, except that the boundary values of functions are taken in the $L_p$-norm. We also construct an optimal method for recovering functions in $H_p^r$ from the Taylor information $f(0),f'(0),\dots,f^{(n+r-1)}(0)$.
@article{IM2_2001_65_5_a2,
     author = {K. Yu. Osipenko},
     title = {Best quadrature formulae on {Hardy--Sobolev} classes},
     journal = {Izvestiya. Mathematics },
     pages = {923--939},
     publisher = {mathdoc},
     volume = {65},
     number = {5},
     year = {2001},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2001_65_5_a2/}
}
TY  - JOUR
AU  - K. Yu. Osipenko
TI  - Best quadrature formulae on Hardy--Sobolev classes
JO  - Izvestiya. Mathematics 
PY  - 2001
SP  - 923
EP  - 939
VL  - 65
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2001_65_5_a2/
LA  - en
ID  - IM2_2001_65_5_a2
ER  - 
%0 Journal Article
%A K. Yu. Osipenko
%T Best quadrature formulae on Hardy--Sobolev classes
%J Izvestiya. Mathematics 
%D 2001
%P 923-939
%V 65
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2001_65_5_a2/
%G en
%F IM2_2001_65_5_a2
K. Yu. Osipenko. Best quadrature formulae on Hardy--Sobolev classes. Izvestiya. Mathematics , Tome 65 (2001) no. 5, pp. 923-939. http://geodesic.mathdoc.fr/item/IM2_2001_65_5_a2/