Asymptotic solutions of Hartree equations concentrated near low-dimensional submanifolds.~I. The model with logarithmic singularity
Izvestiya. Mathematics , Tome 65 (2001) no. 5, pp. 883-921.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a two-dimensional model Schrödinger equation with logarithmic integral non-linearity. We find asymptotic expansions for its solutions (Airy polarons) that decay exponentially at the “semi-infinity” and oscillate along one direction. These solutions may be regarded as new special functions, which are somewhat similar to the Airy function. We use them to construct global asymptotic solutions of Schrödinger equations with a small parameter and with integral non-linearity of Hartree type.
@article{IM2_2001_65_5_a1,
     author = {M. V. Karasev and A. V. Pereskokov},
     title = {Asymptotic solutions of {Hartree} equations concentrated near low-dimensional {submanifolds.~I.} {The} model with logarithmic singularity},
     journal = {Izvestiya. Mathematics },
     pages = {883--921},
     publisher = {mathdoc},
     volume = {65},
     number = {5},
     year = {2001},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2001_65_5_a1/}
}
TY  - JOUR
AU  - M. V. Karasev
AU  - A. V. Pereskokov
TI  - Asymptotic solutions of Hartree equations concentrated near low-dimensional submanifolds.~I. The model with logarithmic singularity
JO  - Izvestiya. Mathematics 
PY  - 2001
SP  - 883
EP  - 921
VL  - 65
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2001_65_5_a1/
LA  - en
ID  - IM2_2001_65_5_a1
ER  - 
%0 Journal Article
%A M. V. Karasev
%A A. V. Pereskokov
%T Asymptotic solutions of Hartree equations concentrated near low-dimensional submanifolds.~I. The model with logarithmic singularity
%J Izvestiya. Mathematics 
%D 2001
%P 883-921
%V 65
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2001_65_5_a1/
%G en
%F IM2_2001_65_5_a1
M. V. Karasev; A. V. Pereskokov. Asymptotic solutions of Hartree equations concentrated near low-dimensional submanifolds.~I. The model with logarithmic singularity. Izvestiya. Mathematics , Tome 65 (2001) no. 5, pp. 883-921. http://geodesic.mathdoc.fr/item/IM2_2001_65_5_a1/

[1] Hartree D. R., “The wave mechanics of an atom with a non-Coulomb central field. I–III”, Proc. Cambridge Philos. Soc., 24 (1928), 89–110 ; 111–132 ; 426–437 | DOI | Zbl

[2] Pekar S. I., Issledovaniya po elektronnoi teorii kristallov, Gostekhizdat, M., 1951

[3] Ring P., Schuck P., The nuclear many-body problem, N. Y., 1980

[4] Gadiyak G. V., Nasyrov K. A., “Rasprostranenie elektromagnitnogo impulsa v rezonansnoi usilivayuschei srede”, Chisl. metody mekh. splosh. sredy (Novosibirsk), 12:5 (1981), 3–13 | Zbl

[5] Kurlandski J., “Nonlocal equation of nonlinear electrodynamics”, Bull. Acad. Pol. Sci., 30:3–4 (1982), 135–153

[6] Olkhov V. M., “Solitonnye resheniya uravneniya s inertsionnoi nelineinostyu”, TMF, 51:1 (1982), 150–152 | MR

[7] Chudnovsky D. V., “Infinite component two-dimensional completely integrable systems of $KdV$ type”, Lect. Notes Math., 925 (1982), 71–84 | DOI | MR | Zbl

[8] Karamzin Yu. N., Tsvetkova I. L., “O skhodimosti spektralnogo metoda resheniya odnoi zadachi nelineinoi optiki”, ZhVM i MF, 22:1 (1982), 235–240 | MR | Zbl

[9] Bogolyubskaya A. A., Bogolyubskii I. L., “Issledovanie barionopodobnykh svyazannykh sostoyanii nerelyativistskikh kvarkov v priblizhenii samosoglasovannogo polya”, TMF, 54:2 (1983), 258–267

[10] Gogny D., Lions P. L., “Hartree–Fock theory in nuclear physics”, Model. Math. et Anal. Numer., 20:4 (1986), 571–637 | MR | Zbl

[11] Bove A., Da Prato G., Fano G., “An existense proof for the Hartree–Fock time dependent problem with bounded two-body intraction”, Comm. Math. Phys., 37 (1974), 183–192 | DOI | MR

[12] Chadam J. M., Glassey R. T., “Global existence of solutions to the Cauchy problem for time-dependent Hartree equation”, J. Math. Phys., 16 (1975), 1122–1130 | DOI | MR | Zbl

[13] Glassey R. T., “Asymptotic behavior of solutions to certain nonlinear Schrödinger–Hartree equations”, Comm. Math. Phys., 53:1 (1977), 9–18 | DOI | MR | Zbl

[14] Delgado V., “Global solutions of the Cauchy problem for the classical coupled Maxwell–Dirak and other nonlinear Dirac equations in one space dimension”, Proc. Amer. Math. Soc., 69:2 (1978), 289–296 | DOI | MR | Zbl

[15] Fukuda I., Tsutsumi M., “On coupled Klein–Gordon–Schrödinger equations”, J. Math. Anal. Appl., 66:2 (1978), 358–378 | DOI | MR | Zbl

[16] Davies E. B., “Some time-dependent Hartree equations”, Ann. Inst. H. Poincare, A31:4 (1979), 319–337 | MR

[17] Ginibre J., Velo G., “On a class of non-linear Schrödinger equations with non-local interaction”, Math. Z., 170:2 (1980), 109–136 | DOI | MR | Zbl

[18] Dias J.-D., Figueira M., “Décroissance a l'infini de la solution d'une equation non lineaire du type Schrödinger–Hartree”, C. R. Acad. Sci., AB290:19 (1980), A889–A892 | MR

[19] Choquet-Bruhat Y., “Solutions globales des equations de Maxwell–Dirac–Klein–Gordon (masses nulles)”, C. R. Acad. Sci. Ser. 1, 292:2 (1981), 153–158 | MR | Zbl

[20] Horst E., “On the classical solutions of the initinal value problem for the unmodified non-linear Vlasov equation”, Math. Meth. Appl. Sci., 3:2 (1981), 229–248 | DOI | MR | Zbl

[21] Strauss W. A., “Nonlinear scattering theory at low energy: sequel”, J. Funct. Anal., 43:3 (1981), 281–293 | DOI | MR | Zbl

[22] Menzala G. P., Strauss W. A., “On a wave equation with a cubic convolution”, Diff. Equat., 43:1 (1982), 93–105 | DOI | MR | Zbl

[23] Nakamitsu K., Tsutsumi M., “The Cauchy problem for the coupled Maxwell–Schrödinger equations”, J. Math. Phys., 27:1 (1986), 211–216 | DOI | MR | Zbl

[24] Reeken M., “General theorem on bifurcation and its application to the Hartree equation of the helium atom”, J. Math. Phys., 11 (1970), 2505–2512 | DOI | MR

[25] Gustafson K., Sather D., “A branching analysis of the Hartree equation”, Rand. Math., 4 (1971), 723–734 | MR

[26] Wolkowsky J., “Existence of solutions of the Hartree equation for $N$ electrons, and application of the Schauder–Tychonoff theorem”, Indiana Univ. Math. J., 22 (1972), 551–558 | DOI | MR

[27] Stuart C., “Existence theory for the Hartree equation”, Arch. Rat. Mech. Anal., 51 (1973), 60–69 | DOI | MR | Zbl

[28] Fonte G., Mignani R., Schiffrer G., “Solution of the Hartree–Fock equations”, Comm. Math. Phys., 33 (1973), 293–304 | DOI | MR

[29] Lieb E. H., Simon B., “The Hartree–Fock theory for Coulumb systems”, Comm. Math. Phys., 53:3 (1977), 185–194 | DOI | MR

[30] Lieb E. H., “Existence and uniqueness of the minimizing solution of Choquard's nonlinear equation”, Stud. Appl. Math., 57 (1977), 93–105 | MR | Zbl

[31] Bader P., “Variational method for the Hartree equation of the helium atom”, Proc. Roy. Soc. Edinburgh, A82:1–2 (1978), 27–39 | MR

[32] Menzala G. P., “On a Hartree type equation: existence of regular solutions”, Lect. Notes Math., 799 (1980), 277–288 | DOI | MR | Zbl

[33] Rosensteel G., Ihrig E., “Existence of Hartree–Fock solutions”, J. Math. Phys., 21:8 (1980), 2297–2301 | DOI | MR

[34] Lions P. L., “The Choquard equation and related quations”, Nonlinear Anal.: Theory, Meth., Appl., 4:6 (1980), 1063–1072 | DOI | MR | Zbl

[35] Bongers A., “Existenzaussagen für die Choquard–Gleichung: Ein nichtlineares Eigen wertproblem der plasma-physik”, Z. angew. Math. Mech., 60:7 (1980), 240–242 | MR

[36] Gegenberg J. D., Das A. J., “An exact stationary solution of the combined Einstein–Maxwell–Klein–Gordon equations”, J. Math. Phys., 22:8 (1981), 1736–1739 | DOI | MR | Zbl

[37] Lions P. L., “Some remarks on Hartree equation”, Nonlinear Anal.: Theory, Meth., Appl., 5:11 (1981), 1245–1256 | DOI | MR | Zbl

[38] Karasev M. V., Osipov Yu. V., “Sobstvennye funktsii uravneniya Khartri–Foka, ne obladayuschie sfericheskoi simmetriei”, TMF, 52:2 (1982), 263–269 | MR

[39] Stuart C. A., Toland J. F., Williams P. G., “Excited states in the Hartree approximation for the hydrogen ion $H^-$”, Proc. Roy. Soc. London, A388:1794 (1983), 229–246

[40] Efinger H. J., Grosse H., “On bound state solutions for certain nonlinear Schrödinger equations”, Lett. Math. Phys., 8:2 (1984), 91–95 | DOI | MR | Zbl

[41] Lions P. L., “Solutions of Hartree–Fock equations for Coulomb systems”, Comm. Math. Phys., 109:1 (1987), 33–97 | DOI | MR | Zbl

[42] Maslov V. P., Kompleksnye markovskie tsepi i kontinualnyi integral Feinmana, Nauka, M., 1976 | MR

[43] Maslov V. P., “Uravneniya samosoglasovannogo polya”, Sovrem. probl. matem., 11, VINITI, M., 1978, 153–234

[44] Karasev M. V., Maslov V. P., “Algebry s obschimi perestanovochnymi sootnosheniyami i ikh prilozheniya. II: Operatornye unitarno-nelineinye uravneniya”, Sovrem. probl. matem., 13, VINITI, M., 1979, 145–267 | MR

[45] Vlasov A. A., Nelokalnaya statisticheskaya mekhanika, Nauka, M., 1978 | MR | Zbl

[46] Braun W., Hepp K., “The Vlasov dynamics and its fluctuations in the $1/N$-limit of interacting classical particals”, Comm. Math. Phis., 56:2 (1977), 101–113 | DOI | MR

[47] Dorbushin R. L., “Uravneniya Vlasova”, Funkts. analiz i ego prilozh., 13:2 (1979), 48–58 | MR

[48] Langmuir I., Blodgett K., “Currents limitid by space charge between concentric spheres”, Phys. Rev., 24:1 (1924), 49–59 | DOI

[49] Mokin Yu. N., “O dvukh modelyakh statsionarnogo dvizheniya zaryazhennykh chastits v vakuumnom diode”, Matem. sb., 106:2 (1978), 234–265 | MR

[50] Batt J., “Recent development in the mathematical investigation of the initial value problem of stellar dynamics and plasma physics”, Ann. Nucl. Energy, 7:4–5 (1980), 213–217 | DOI | MR

[51] Batt J., Faltenbacher W., Horst E., “Sationary spherically symmetric models in stellar dinamics”, Arch. Rat. Mech. Anal., 93:2 (1986), 159–183 | DOI | MR | Zbl

[52] Polyachenko V. L., Fridman A. M., Ravnovesie i ustoichivost gravitiruyuschikh sistem, Nauka, M., 1976 | MR | Zbl

[53] Lin C. C., Lau Y. Y., “Density wave theory of spiral structure of galaxies”, Stud. Appl. Math., 60:2 (1979), 97–163 | MR

[54] Bonnor W. B., “Equilibrium of chardged dust in general relativity”, Gen. Relat. and Gravit., 12:6 (1980), 453–465 | DOI | MR

[55] Marsden J. E., Weinstein A., “The Hamilton structure of the Maxwell–Vlasov equations”, Phisica D, 4:3 (1982), 394–406 | DOI | MR

[56] Maslov V. P., Kompleksnyi metod VKB v nelineinykh uravneniyakh, Nauka, M., 1977 | MR

[57] Simenog I. V., “Ob asimptotike resheniya statsionarnogo nelineinogo uravneniya Khartri”, TMF, 30:3 (1977), 408–411 | MR

[58] Karasev M. V., “Asimptotika spektra smeshannykh sostoyanii dlya uravnenii samosoglasovannogo polya”, TMF, 61:1 (1984), 118–127 | MR | Zbl

[59] Karasev M. V., Maslov V. P., Pereskokov A. V., “Rezonansnye chastoty ventilei v opticheskikh sredakh s prostranstvennoi dispersiei”, DAN SSSR, 281:5 (1985), 1085–1088 | MR

[60] Karasev M. V., “Skrytaya simmetriya sistemy uravnenii nelineinoi optiki”, DAN SSSR, 286:4 (1986), 852–856 | MR

[61] Karasev M. V., Pereskokov A. V., “Quantization rules for self-consistent field equation with local and nonlocal nonlinearities”, Excited polaron states in condensed media, Manchester Union. Press, Manchester, 1991, 157–170

[62] Karasev M. V., Pereskokov A. V., “Odnomernye uravneniya samosoglasovannogo polya s kubicheskoi nelineinostyu v kvaziklassicheskom priblizhenii”, Matem. zametki, 52:2 (1992), 66–82 | MR

[63] Chernykh S. I., “Kvaziklassicheskaya chastitsa v odnomernom samosoglasovannom pole”, TMF, 52:3 (1982), 491–494 | MR

[64] Karasev M. V., Pereskokov A. V., “Logarifmicheskie popravki v pravile kvantovaniya. Spektr polyarona”, TMF, 97:1 (1993), 78–93 | MR

[65] Pereskokov A. V., “Pravilo kvantovaniya dlya nelineinogo uravneniya Shrëdingera vo vneshnem pole”, Matem. zametki, 44:1 (1988), 149–152 | MR | Zbl

[66] Karasev M. V., Pereskokov A. V., “Turning points and phase shifts in ordinary differential equations with saturating nonlinearity”, Asymptotic Analysis, 7:1 (1993), 49–66 | MR | Zbl

[67] Karasev M. V., Pereskokov A. V., “Tochki povorota, nabegi faz, pravila kvantovaniya v obyknovennykh differentsialnykh uravneniyakh s lokalnoi bystroubyvayuschei nelineinostyu”, Tr. Mosk. matem. ob-va, 56 (1995), 107–176 | MR

[68] Karasev M. V., Pereskokov A. V., “O formulakh svyazi dlya vtorogo transtsendenta Penleve. Dokazatelstvo gipotezy Mailsa i pravilo kvantovaniya”, Izv. RAN. Ser. matem., 57:3 (1993), 92–151 | MR | Zbl

[69] Vazov V., Asimptoticheskie razlozheniya reshenii obyknovennykh differentsialnykh uravnenii, Mir, M., 1968

[70] Ilin A. M., Soglasovanie asimptoticheskikh razlozhenii reshenii kraevykh zadach, Nauka, M., 1989 | MR

[71] Uizem Dzh., Lineinye i nelineinye volny, Mir, M., 1977

[72] Dobrokhotov S. Yu., Maslov V. P., “Konechnozonnye pochti periodicheskie resheniya v VKB-priblizheniyakh”, Sovrem. probl. matem., 15, VINITI, M., 1980, 3–94 | MR

[73] Spravochnik po spetsialnym funktsiyam s formulami, grafikami i matematicheskimi tablitsami, eds. M. Abramovits, I. Stigan, Nauka, M., 1979 | MR

[74] Berezin F. A., Shubin M. A., Uravnenie Shrëdingera, Izd-vo MGU, M., 1983 | MR

[75] Gradshtein I. S., Ryzhik I. M., Tablitsy integralov, summ, ryadov i proizvedenii, Fizmatgiz, M., 1963 | MR