Asymptotic solutions of Hartree equations concentrated near low-dimensional submanifolds.~I. The model with logarithmic singularity
Izvestiya. Mathematics , Tome 65 (2001) no. 5, pp. 883-921
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider a two-dimensional model Schrödinger equation with logarithmic integral non-linearity. We find asymptotic expansions for its solutions (Airy polarons) that
decay exponentially at the “semi-infinity” and oscillate along one direction. These solutions may be regarded as new special functions, which are somewhat similar to the Airy function.
We use them to construct global asymptotic solutions of Schrödinger equations with a small parameter and with integral non-linearity of Hartree type.
@article{IM2_2001_65_5_a1,
author = {M. V. Karasev and A. V. Pereskokov},
title = {Asymptotic solutions of {Hartree} equations concentrated near low-dimensional {submanifolds.~I.} {The} model with logarithmic singularity},
journal = {Izvestiya. Mathematics },
pages = {883--921},
publisher = {mathdoc},
volume = {65},
number = {5},
year = {2001},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_2001_65_5_a1/}
}
TY - JOUR AU - M. V. Karasev AU - A. V. Pereskokov TI - Asymptotic solutions of Hartree equations concentrated near low-dimensional submanifolds.~I. The model with logarithmic singularity JO - Izvestiya. Mathematics PY - 2001 SP - 883 EP - 921 VL - 65 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IM2_2001_65_5_a1/ LA - en ID - IM2_2001_65_5_a1 ER -
%0 Journal Article %A M. V. Karasev %A A. V. Pereskokov %T Asymptotic solutions of Hartree equations concentrated near low-dimensional submanifolds.~I. The model with logarithmic singularity %J Izvestiya. Mathematics %D 2001 %P 883-921 %V 65 %N 5 %I mathdoc %U http://geodesic.mathdoc.fr/item/IM2_2001_65_5_a1/ %G en %F IM2_2001_65_5_a1
M. V. Karasev; A. V. Pereskokov. Asymptotic solutions of Hartree equations concentrated near low-dimensional submanifolds.~I. The model with logarithmic singularity. Izvestiya. Mathematics , Tome 65 (2001) no. 5, pp. 883-921. http://geodesic.mathdoc.fr/item/IM2_2001_65_5_a1/