Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_2001_65_5_a1, author = {M. V. Karasev and A. V. Pereskokov}, title = {Asymptotic solutions of {Hartree} equations concentrated near low-dimensional {submanifolds.~I.} {The} model with logarithmic singularity}, journal = {Izvestiya. Mathematics }, pages = {883--921}, publisher = {mathdoc}, volume = {65}, number = {5}, year = {2001}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_2001_65_5_a1/} }
TY - JOUR AU - M. V. Karasev AU - A. V. Pereskokov TI - Asymptotic solutions of Hartree equations concentrated near low-dimensional submanifolds.~I. The model with logarithmic singularity JO - Izvestiya. Mathematics PY - 2001 SP - 883 EP - 921 VL - 65 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IM2_2001_65_5_a1/ LA - en ID - IM2_2001_65_5_a1 ER -
%0 Journal Article %A M. V. Karasev %A A. V. Pereskokov %T Asymptotic solutions of Hartree equations concentrated near low-dimensional submanifolds.~I. The model with logarithmic singularity %J Izvestiya. Mathematics %D 2001 %P 883-921 %V 65 %N 5 %I mathdoc %U http://geodesic.mathdoc.fr/item/IM2_2001_65_5_a1/ %G en %F IM2_2001_65_5_a1
M. V. Karasev; A. V. Pereskokov. Asymptotic solutions of Hartree equations concentrated near low-dimensional submanifolds.~I. The model with logarithmic singularity. Izvestiya. Mathematics , Tome 65 (2001) no. 5, pp. 883-921. http://geodesic.mathdoc.fr/item/IM2_2001_65_5_a1/
[1] Hartree D. R., “The wave mechanics of an atom with a non-Coulomb central field. I–III”, Proc. Cambridge Philos. Soc., 24 (1928), 89–110 ; 111–132 ; 426–437 | DOI | Zbl
[2] Pekar S. I., Issledovaniya po elektronnoi teorii kristallov, Gostekhizdat, M., 1951
[3] Ring P., Schuck P., The nuclear many-body problem, N. Y., 1980
[4] Gadiyak G. V., Nasyrov K. A., “Rasprostranenie elektromagnitnogo impulsa v rezonansnoi usilivayuschei srede”, Chisl. metody mekh. splosh. sredy (Novosibirsk), 12:5 (1981), 3–13 | Zbl
[5] Kurlandski J., “Nonlocal equation of nonlinear electrodynamics”, Bull. Acad. Pol. Sci., 30:3–4 (1982), 135–153
[6] Olkhov V. M., “Solitonnye resheniya uravneniya s inertsionnoi nelineinostyu”, TMF, 51:1 (1982), 150–152 | MR
[7] Chudnovsky D. V., “Infinite component two-dimensional completely integrable systems of $KdV$ type”, Lect. Notes Math., 925 (1982), 71–84 | DOI | MR | Zbl
[8] Karamzin Yu. N., Tsvetkova I. L., “O skhodimosti spektralnogo metoda resheniya odnoi zadachi nelineinoi optiki”, ZhVM i MF, 22:1 (1982), 235–240 | MR | Zbl
[9] Bogolyubskaya A. A., Bogolyubskii I. L., “Issledovanie barionopodobnykh svyazannykh sostoyanii nerelyativistskikh kvarkov v priblizhenii samosoglasovannogo polya”, TMF, 54:2 (1983), 258–267
[10] Gogny D., Lions P. L., “Hartree–Fock theory in nuclear physics”, Model. Math. et Anal. Numer., 20:4 (1986), 571–637 | MR | Zbl
[11] Bove A., Da Prato G., Fano G., “An existense proof for the Hartree–Fock time dependent problem with bounded two-body intraction”, Comm. Math. Phys., 37 (1974), 183–192 | DOI | MR
[12] Chadam J. M., Glassey R. T., “Global existence of solutions to the Cauchy problem for time-dependent Hartree equation”, J. Math. Phys., 16 (1975), 1122–1130 | DOI | MR | Zbl
[13] Glassey R. T., “Asymptotic behavior of solutions to certain nonlinear Schrödinger–Hartree equations”, Comm. Math. Phys., 53:1 (1977), 9–18 | DOI | MR | Zbl
[14] Delgado V., “Global solutions of the Cauchy problem for the classical coupled Maxwell–Dirak and other nonlinear Dirac equations in one space dimension”, Proc. Amer. Math. Soc., 69:2 (1978), 289–296 | DOI | MR | Zbl
[15] Fukuda I., Tsutsumi M., “On coupled Klein–Gordon–Schrödinger equations”, J. Math. Anal. Appl., 66:2 (1978), 358–378 | DOI | MR | Zbl
[16] Davies E. B., “Some time-dependent Hartree equations”, Ann. Inst. H. Poincare, A31:4 (1979), 319–337 | MR
[17] Ginibre J., Velo G., “On a class of non-linear Schrödinger equations with non-local interaction”, Math. Z., 170:2 (1980), 109–136 | DOI | MR | Zbl
[18] Dias J.-D., Figueira M., “Décroissance a l'infini de la solution d'une equation non lineaire du type Schrödinger–Hartree”, C. R. Acad. Sci., AB290:19 (1980), A889–A892 | MR
[19] Choquet-Bruhat Y., “Solutions globales des equations de Maxwell–Dirac–Klein–Gordon (masses nulles)”, C. R. Acad. Sci. Ser. 1, 292:2 (1981), 153–158 | MR | Zbl
[20] Horst E., “On the classical solutions of the initinal value problem for the unmodified non-linear Vlasov equation”, Math. Meth. Appl. Sci., 3:2 (1981), 229–248 | DOI | MR | Zbl
[21] Strauss W. A., “Nonlinear scattering theory at low energy: sequel”, J. Funct. Anal., 43:3 (1981), 281–293 | DOI | MR | Zbl
[22] Menzala G. P., Strauss W. A., “On a wave equation with a cubic convolution”, Diff. Equat., 43:1 (1982), 93–105 | DOI | MR | Zbl
[23] Nakamitsu K., Tsutsumi M., “The Cauchy problem for the coupled Maxwell–Schrödinger equations”, J. Math. Phys., 27:1 (1986), 211–216 | DOI | MR | Zbl
[24] Reeken M., “General theorem on bifurcation and its application to the Hartree equation of the helium atom”, J. Math. Phys., 11 (1970), 2505–2512 | DOI | MR
[25] Gustafson K., Sather D., “A branching analysis of the Hartree equation”, Rand. Math., 4 (1971), 723–734 | MR
[26] Wolkowsky J., “Existence of solutions of the Hartree equation for $N$ electrons, and application of the Schauder–Tychonoff theorem”, Indiana Univ. Math. J., 22 (1972), 551–558 | DOI | MR
[27] Stuart C., “Existence theory for the Hartree equation”, Arch. Rat. Mech. Anal., 51 (1973), 60–69 | DOI | MR | Zbl
[28] Fonte G., Mignani R., Schiffrer G., “Solution of the Hartree–Fock equations”, Comm. Math. Phys., 33 (1973), 293–304 | DOI | MR
[29] Lieb E. H., Simon B., “The Hartree–Fock theory for Coulumb systems”, Comm. Math. Phys., 53:3 (1977), 185–194 | DOI | MR
[30] Lieb E. H., “Existence and uniqueness of the minimizing solution of Choquard's nonlinear equation”, Stud. Appl. Math., 57 (1977), 93–105 | MR | Zbl
[31] Bader P., “Variational method for the Hartree equation of the helium atom”, Proc. Roy. Soc. Edinburgh, A82:1–2 (1978), 27–39 | MR
[32] Menzala G. P., “On a Hartree type equation: existence of regular solutions”, Lect. Notes Math., 799 (1980), 277–288 | DOI | MR | Zbl
[33] Rosensteel G., Ihrig E., “Existence of Hartree–Fock solutions”, J. Math. Phys., 21:8 (1980), 2297–2301 | DOI | MR
[34] Lions P. L., “The Choquard equation and related quations”, Nonlinear Anal.: Theory, Meth., Appl., 4:6 (1980), 1063–1072 | DOI | MR | Zbl
[35] Bongers A., “Existenzaussagen für die Choquard–Gleichung: Ein nichtlineares Eigen wertproblem der plasma-physik”, Z. angew. Math. Mech., 60:7 (1980), 240–242 | MR
[36] Gegenberg J. D., Das A. J., “An exact stationary solution of the combined Einstein–Maxwell–Klein–Gordon equations”, J. Math. Phys., 22:8 (1981), 1736–1739 | DOI | MR | Zbl
[37] Lions P. L., “Some remarks on Hartree equation”, Nonlinear Anal.: Theory, Meth., Appl., 5:11 (1981), 1245–1256 | DOI | MR | Zbl
[38] Karasev M. V., Osipov Yu. V., “Sobstvennye funktsii uravneniya Khartri–Foka, ne obladayuschie sfericheskoi simmetriei”, TMF, 52:2 (1982), 263–269 | MR
[39] Stuart C. A., Toland J. F., Williams P. G., “Excited states in the Hartree approximation for the hydrogen ion $H^-$”, Proc. Roy. Soc. London, A388:1794 (1983), 229–246
[40] Efinger H. J., Grosse H., “On bound state solutions for certain nonlinear Schrödinger equations”, Lett. Math. Phys., 8:2 (1984), 91–95 | DOI | MR | Zbl
[41] Lions P. L., “Solutions of Hartree–Fock equations for Coulomb systems”, Comm. Math. Phys., 109:1 (1987), 33–97 | DOI | MR | Zbl
[42] Maslov V. P., Kompleksnye markovskie tsepi i kontinualnyi integral Feinmana, Nauka, M., 1976 | MR
[43] Maslov V. P., “Uravneniya samosoglasovannogo polya”, Sovrem. probl. matem., 11, VINITI, M., 1978, 153–234
[44] Karasev M. V., Maslov V. P., “Algebry s obschimi perestanovochnymi sootnosheniyami i ikh prilozheniya. II: Operatornye unitarno-nelineinye uravneniya”, Sovrem. probl. matem., 13, VINITI, M., 1979, 145–267 | MR
[45] Vlasov A. A., Nelokalnaya statisticheskaya mekhanika, Nauka, M., 1978 | MR | Zbl
[46] Braun W., Hepp K., “The Vlasov dynamics and its fluctuations in the $1/N$-limit of interacting classical particals”, Comm. Math. Phis., 56:2 (1977), 101–113 | DOI | MR
[47] Dorbushin R. L., “Uravneniya Vlasova”, Funkts. analiz i ego prilozh., 13:2 (1979), 48–58 | MR
[48] Langmuir I., Blodgett K., “Currents limitid by space charge between concentric spheres”, Phys. Rev., 24:1 (1924), 49–59 | DOI
[49] Mokin Yu. N., “O dvukh modelyakh statsionarnogo dvizheniya zaryazhennykh chastits v vakuumnom diode”, Matem. sb., 106:2 (1978), 234–265 | MR
[50] Batt J., “Recent development in the mathematical investigation of the initial value problem of stellar dynamics and plasma physics”, Ann. Nucl. Energy, 7:4–5 (1980), 213–217 | DOI | MR
[51] Batt J., Faltenbacher W., Horst E., “Sationary spherically symmetric models in stellar dinamics”, Arch. Rat. Mech. Anal., 93:2 (1986), 159–183 | DOI | MR | Zbl
[52] Polyachenko V. L., Fridman A. M., Ravnovesie i ustoichivost gravitiruyuschikh sistem, Nauka, M., 1976 | MR | Zbl
[53] Lin C. C., Lau Y. Y., “Density wave theory of spiral structure of galaxies”, Stud. Appl. Math., 60:2 (1979), 97–163 | MR
[54] Bonnor W. B., “Equilibrium of chardged dust in general relativity”, Gen. Relat. and Gravit., 12:6 (1980), 453–465 | DOI | MR
[55] Marsden J. E., Weinstein A., “The Hamilton structure of the Maxwell–Vlasov equations”, Phisica D, 4:3 (1982), 394–406 | DOI | MR
[56] Maslov V. P., Kompleksnyi metod VKB v nelineinykh uravneniyakh, Nauka, M., 1977 | MR
[57] Simenog I. V., “Ob asimptotike resheniya statsionarnogo nelineinogo uravneniya Khartri”, TMF, 30:3 (1977), 408–411 | MR
[58] Karasev M. V., “Asimptotika spektra smeshannykh sostoyanii dlya uravnenii samosoglasovannogo polya”, TMF, 61:1 (1984), 118–127 | MR | Zbl
[59] Karasev M. V., Maslov V. P., Pereskokov A. V., “Rezonansnye chastoty ventilei v opticheskikh sredakh s prostranstvennoi dispersiei”, DAN SSSR, 281:5 (1985), 1085–1088 | MR
[60] Karasev M. V., “Skrytaya simmetriya sistemy uravnenii nelineinoi optiki”, DAN SSSR, 286:4 (1986), 852–856 | MR
[61] Karasev M. V., Pereskokov A. V., “Quantization rules for self-consistent field equation with local and nonlocal nonlinearities”, Excited polaron states in condensed media, Manchester Union. Press, Manchester, 1991, 157–170
[62] Karasev M. V., Pereskokov A. V., “Odnomernye uravneniya samosoglasovannogo polya s kubicheskoi nelineinostyu v kvaziklassicheskom priblizhenii”, Matem. zametki, 52:2 (1992), 66–82 | MR
[63] Chernykh S. I., “Kvaziklassicheskaya chastitsa v odnomernom samosoglasovannom pole”, TMF, 52:3 (1982), 491–494 | MR
[64] Karasev M. V., Pereskokov A. V., “Logarifmicheskie popravki v pravile kvantovaniya. Spektr polyarona”, TMF, 97:1 (1993), 78–93 | MR
[65] Pereskokov A. V., “Pravilo kvantovaniya dlya nelineinogo uravneniya Shrëdingera vo vneshnem pole”, Matem. zametki, 44:1 (1988), 149–152 | MR | Zbl
[66] Karasev M. V., Pereskokov A. V., “Turning points and phase shifts in ordinary differential equations with saturating nonlinearity”, Asymptotic Analysis, 7:1 (1993), 49–66 | MR | Zbl
[67] Karasev M. V., Pereskokov A. V., “Tochki povorota, nabegi faz, pravila kvantovaniya v obyknovennykh differentsialnykh uravneniyakh s lokalnoi bystroubyvayuschei nelineinostyu”, Tr. Mosk. matem. ob-va, 56 (1995), 107–176 | MR
[68] Karasev M. V., Pereskokov A. V., “O formulakh svyazi dlya vtorogo transtsendenta Penleve. Dokazatelstvo gipotezy Mailsa i pravilo kvantovaniya”, Izv. RAN. Ser. matem., 57:3 (1993), 92–151 | MR | Zbl
[69] Vazov V., Asimptoticheskie razlozheniya reshenii obyknovennykh differentsialnykh uravnenii, Mir, M., 1968
[70] Ilin A. M., Soglasovanie asimptoticheskikh razlozhenii reshenii kraevykh zadach, Nauka, M., 1989 | MR
[71] Uizem Dzh., Lineinye i nelineinye volny, Mir, M., 1977
[72] Dobrokhotov S. Yu., Maslov V. P., “Konechnozonnye pochti periodicheskie resheniya v VKB-priblizheniyakh”, Sovrem. probl. matem., 15, VINITI, M., 1980, 3–94 | MR
[73] Spravochnik po spetsialnym funktsiyam s formulami, grafikami i matematicheskimi tablitsami, eds. M. Abramovits, I. Stigan, Nauka, M., 1979 | MR
[74] Berezin F. A., Shubin M. A., Uravnenie Shrëdingera, Izd-vo MGU, M., 1983 | MR
[75] Gradshtein I. S., Ryzhik I. M., Tablitsy integralov, summ, ryadov i proizvedenii, Fizmatgiz, M., 1963 | MR