Riemann--Roch variations
Izvestiya. Mathematics , Tome 65 (2001) no. 5, pp. 853-881

Voir la notice de l'article provenant de la source Math-Net.Ru

We construct a mirror-type correspondence that assigns variations (that is, local systems, $D$-modules or $l$-adic sheaves) to pairs $(V,C)$, where $V$ is a variety and $C$ is a complex of densely filtered vector bundles over $V$. We consider Calabi–Yau complete intersections in projective spaces. In the particular case when the complex is quasi-isomorphic to the tangent bundle on a generic Calabi–Yau complete intersection, this construction yields the variation that arises in the relative cohomology of the mirror-dual pencil. We call it the Riemann–Roch variation. The Riemann–Roch data of the divisorial sublattice in the $K$-group can be read off the Riemann–Roch local system since it encodes the information about the Euler characteristics of all $\mathscr O(i)$ sheaves (in an essentially non-commutative way).
@article{IM2_2001_65_5_a0,
     author = {V. V. Golyshev},
     title = {Riemann--Roch variations},
     journal = {Izvestiya. Mathematics },
     pages = {853--881},
     publisher = {mathdoc},
     volume = {65},
     number = {5},
     year = {2001},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2001_65_5_a0/}
}
TY  - JOUR
AU  - V. V. Golyshev
TI  - Riemann--Roch variations
JO  - Izvestiya. Mathematics 
PY  - 2001
SP  - 853
EP  - 881
VL  - 65
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2001_65_5_a0/
LA  - en
ID  - IM2_2001_65_5_a0
ER  - 
%0 Journal Article
%A V. V. Golyshev
%T Riemann--Roch variations
%J Izvestiya. Mathematics 
%D 2001
%P 853-881
%V 65
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2001_65_5_a0/
%G en
%F IM2_2001_65_5_a0
V. V. Golyshev. Riemann--Roch variations. Izvestiya. Mathematics , Tome 65 (2001) no. 5, pp. 853-881. http://geodesic.mathdoc.fr/item/IM2_2001_65_5_a0/