Riemann--Roch variations
Izvestiya. Mathematics , Tome 65 (2001) no. 5, pp. 853-881.

Voir la notice de l'article provenant de la source Math-Net.Ru

We construct a mirror-type correspondence that assigns variations (that is, local systems, $D$-modules or $l$-adic sheaves) to pairs $(V,C)$, where $V$ is a variety and $C$ is a complex of densely filtered vector bundles over $V$. We consider Calabi–Yau complete intersections in projective spaces. In the particular case when the complex is quasi-isomorphic to the tangent bundle on a generic Calabi–Yau complete intersection, this construction yields the variation that arises in the relative cohomology of the mirror-dual pencil. We call it the Riemann–Roch variation. The Riemann–Roch data of the divisorial sublattice in the $K$-group can be read off the Riemann–Roch local system since it encodes the information about the Euler characteristics of all $\mathscr O(i)$ sheaves (in an essentially non-commutative way).
@article{IM2_2001_65_5_a0,
     author = {V. V. Golyshev},
     title = {Riemann--Roch variations},
     journal = {Izvestiya. Mathematics },
     pages = {853--881},
     publisher = {mathdoc},
     volume = {65},
     number = {5},
     year = {2001},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2001_65_5_a0/}
}
TY  - JOUR
AU  - V. V. Golyshev
TI  - Riemann--Roch variations
JO  - Izvestiya. Mathematics 
PY  - 2001
SP  - 853
EP  - 881
VL  - 65
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2001_65_5_a0/
LA  - en
ID  - IM2_2001_65_5_a0
ER  - 
%0 Journal Article
%A V. V. Golyshev
%T Riemann--Roch variations
%J Izvestiya. Mathematics 
%D 2001
%P 853-881
%V 65
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2001_65_5_a0/
%G en
%F IM2_2001_65_5_a0
V. V. Golyshev. Riemann--Roch variations. Izvestiya. Mathematics , Tome 65 (2001) no. 5, pp. 853-881. http://geodesic.mathdoc.fr/item/IM2_2001_65_5_a0/

[1] Batyrev V. V., “Dual polyhedra and mirror symmetry for Calabi–Yau hypersurfaces in toric varieties”, J. Alg. Geom., 3:3 (1994), 493–535 | MR | Zbl

[2] Beauville A., “Quantum cohomology of complete intersections”, Mat. Fiz. Anal. Geom., 2:3–4 (1995), 384–398 | MR | Zbl

[3] Batyrev V. V., Borisov L., “Dual cones and mirror symmetry for generalized Calabi–Yau manifolds”, Mirror Symmetry, V. II, Studies in Advanced Mathematics, 1, eds. B. R. Greene, S.-T. Yau, American Math. Soc. International Press, 1997 | MR

[4] Batyrev V. V., Borisov L., On Calabi–Yau complete intersections, E-print alg-geom/9412017

[5] Beilinson A. A., “Kogerentnye puchki na $\mathbb P^n$ i problemy lineinoi algebry”, Funkts. analiz i ego prilozh., 12:3 (1978), 68–69 | MR | Zbl

[6] Bondal A. I., “Predstavleniya assotsiativnykh algebr i kogerentnye puchki”, Izv. AN SSSR, 53:1 (1989), 25–44 | MR

[7] Bondal A., Orlov D., Reconstruction of a variety from the derived category and groups of autoequivalences, Preprint MPI/97-36 | MR

[8] Candelas P., De la Ossa X. C., Green P. S., Parkes L., “A pair of Calabi–Yau manifolds as an exactly soluble superconformal theory”, Phys. Lett. B, 258 (1991), 118–126 | DOI | MR

[9] Dubrovin B., “Geometry of 2D topological field theories”, LNM, 1620, 1996, 120–348 | MR | Zbl

[10] Ekedahl T., “On the adic formalism”, The Grothendieck Festschrift, Progress on Mathematics, 87, Birkhäuser Verlag, Basel–Boston–Berlin, 1990 | MR | Zbl

[11] Givental A., “Equivariant Gromov–Witten invariants”, Internat. Math. Res. Notices, 1996, no. 13, 613–663 | DOI | MR | Zbl

[12] Givental A., “The mirror formula for quintic threefolds”, Amer. Math. Soc. Transl. Ser. 2, 196 (1999) | MR | Zbl

[13] Golyshev V., Lunts V., Orlov D., “Mirror symmetry for abelian varieties”, J. Alg. Geom., 10 (2001), 433–496 | MR | Zbl

[14] Griffiths Ph. et al., Topics in transcendental algebraic geometry, Annals of Math. Studies, 106, Princeton Univ. Press, 1984 | MR | Zbl

[15] Guzzetti D., “Stokes Matrices and Monodromy of the Quantum Cohomology of Projective Spaces”, Comm. Math. Phys., 207:2 (1999), 341–383 | DOI | MR | Zbl

[16] Mirror Symmetry, V. II, Studies in Advanced Mathematics, 1, eds. Greene B. R., Yau S.-T., American Math. Soc. International Press, 1997 | MR

[17] Horja R. P., Hypergeometric functions and mirror symmetry in toric varieties, E-print alg-geom/9912109

[18] Kapranov M. M., “On the derived categories of coherent sheaves on some homogeneous spaces”, Invent. Math., 92 (1988), 479–508 | DOI | MR | Zbl

[19] Katz N., “On the calculation of some differential Galois groups”, Inv. Math., 87 (1987), 13–61 | DOI | MR | Zbl

[20] Katz N., “Exponential sums over finite fields and differential equations over the complex numbers: some interactions”, Bull. AMS (New Series), 23:2 (1990) | MR | Zbl

[21] Katz N., Gauss Sums, Kloosterman Sums and Monodromy Groups, Annals of Math. Study, 116, Princeton Univ. Press, 1988 | MR | Zbl

[22] Katz N., Exponential Sums and Differential Equations, Annals of Math. Study, 124, Princeton Univ. Press, 1990 | MR | Zbl

[23] Katz N., Rigid Local Systems, Annals of Math. Study, 139, Princeton Univ. Press, 1996 | MR | Zbl

[24] Kleiman S., “Algebraic cycles and the Weil conjectures”, Dix Exposés sur la Cohomologie des Schémas, North-Holland, Amsterdam, 1968, 359–386 | MR

[25] Kontsevich M., “Homological algebra of mirror symmetry”, Proc. Intern. Congr. Math., V. 1 (Zürich. 1994), ed. S. D. Chatterji, Birkhäuser Verlag, Basel–Boston–Berlin, 1995, 120–139 | MR | Zbl

[26] Looijenga E., Lunts V., “A Lie algebra attached to a projective variety”, Invent. Math., 129 (1997), 361–412 | DOI | MR | Zbl

[27] Manin Yu., “Problems on rational points and rational curves on algebraic varieties”, Surveys of Diff. Geometry, V. II, eds. C. C. Hsiung, S.-T. Yau, Int. Press, 1995, 214–245 | MR | Zbl

[28] Miln Dzh., Etalnye kogomologii, Mir, M., 1983 | MR | Zbl

[29] Orlov D., “Equivalences of derived categories and $K3$ surfaces”, J. of Math. Sciences, 85:6 (1997) ; Plenum Publ. Corp. Alg. geom. (5), 34; Д. О. Орлов, “Производные категории когерентных пучков на абелевых многообразиях и эквивалентности между ними”, Изв. РАН. Сер. матем., 66:3 (2002), 131–158 | MR | DOI | MR | Zbl

[30] Izv. Math., 66:3 (2002), 569–594 | DOI | DOI | MR | Zbl

[31] Verdier J.-L., “Catégories dérivées”, Lect. Notes Math., 569 (1977), 262–311 | DOI | MR | Zbl

[32] Grothendieck A., Dieudonné J., “Éléments de géométrie algébrique”, Publ. Math. I.H.E.S., no. 11

[33] Berthelot P., Grothendieck A., Illusie L., Théorie des intersections et théoreme de Riemann–Roch, Springer Lect. Notes Math., 225, 1971 | MR

[34] Griffits F., Kharris Dzh., Printsipy algebraicheskoi geometrii, Mir, M., 1982 | MR