Riemann--Roch variations
Izvestiya. Mathematics , Tome 65 (2001) no. 5, pp. 853-881
Voir la notice de l'article provenant de la source Math-Net.Ru
We construct a mirror-type correspondence that assigns variations (that is, local systems,
$D$-modules or $l$-adic sheaves) to pairs $(V,C)$, where $V$ is a variety and $C$ is a complex of densely filtered vector bundles over $V$. We consider Calabi–Yau complete intersections in projective spaces. In the particular case when the complex is quasi-isomorphic to the tangent bundle on a generic Calabi–Yau complete intersection, this construction yields the variation that arises in the relative cohomology of the mirror-dual pencil. We call it the Riemann–Roch variation. The Riemann–Roch data of the divisorial sublattice in the $K$-group can be read off the Riemann–Roch local system since it encodes the information about the Euler characteristics of all $\mathscr O(i)$ sheaves (in an essentially non-commutative way).
@article{IM2_2001_65_5_a0,
author = {V. V. Golyshev},
title = {Riemann--Roch variations},
journal = {Izvestiya. Mathematics },
pages = {853--881},
publisher = {mathdoc},
volume = {65},
number = {5},
year = {2001},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_2001_65_5_a0/}
}
V. V. Golyshev. Riemann--Roch variations. Izvestiya. Mathematics , Tome 65 (2001) no. 5, pp. 853-881. http://geodesic.mathdoc.fr/item/IM2_2001_65_5_a0/