Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_2001_65_4_a2, author = {V. I. Buslaev}, title = {On the {Van} {Vleck} theorem for regular $C$-fractions with limit-periodic coefficients}, journal = {Izvestiya. Mathematics }, pages = {673--686}, publisher = {mathdoc}, volume = {65}, number = {4}, year = {2001}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_2001_65_4_a2/} }
V. I. Buslaev. On the Van Vleck theorem for regular $C$-fractions with limit-periodic coefficients. Izvestiya. Mathematics , Tome 65 (2001) no. 4, pp. 673-686. http://geodesic.mathdoc.fr/item/IM2_2001_65_4_a2/
[1] Vlek E. V., “On the conergence of algebraic continued fractions whose coefficients have limiting values”, Trans. Amer. Math. Soc., 5 (1904), 253–262 | DOI | MR
[2] Goluzin G. M., Geometricheskaya teoriya funktsii kompleksnogo peremennogo, Nauka, M., 1966 | MR
[3] Stahl H., “Orthogonal polynomials with complex valued weight function. I; II”, Constr. approx., 2 (1986), 225–240 ; 241–251 | DOI | MR | Zbl | Zbl
[4] Buslaev V. I., “O teoreme Puankare i ee prilozheniyakh k voprosam skhodimosti tsepnykh drobei”, Matem. sb., 189:12 (1998), 13–28 | MR | Zbl
[5] Worpitsky J., “Untersuchungen über die Entwickelung der monodromen und monogenen Funktionen durch Kettenbruche”, Friedrichs-Gymnasium und Realschule Jahresbericht, Berlin, 1865, 3–39
[6] Dzhouns U., Tron V., Nepreryvnye drobi, Mir, M., 1985 | MR
[7] Polya G., “Beitrag zur Verallgemeinerung des Verzerrungssatzes auf mehrfach zusammenhängende Gebiete, III”, Sitzungsber. Preuss. Akad. Wiss. Phys.-math. Kl., 1929, 55–62 | Zbl