On the Van Vleck theorem for regular $C$-fractions with limit-periodic coefficients
Izvestiya. Mathematics , Tome 65 (2001) no. 4, pp. 673-686.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we investigate the convergence set of a regular $C$-fraction with limit-periodic coefficients. This investigation is based on a general assertion concerning the convergence of composites of linear-fractional transformations whose coefficients are limit-periodic functions depending holomorphically on a parameter. We show that the singularity set of such a $C$-fraction possesses an extremal property stated in terms of the transfinite diameter (capacity) of sets.
@article{IM2_2001_65_4_a2,
     author = {V. I. Buslaev},
     title = {On the {Van} {Vleck} theorem for regular $C$-fractions with limit-periodic coefficients},
     journal = {Izvestiya. Mathematics },
     pages = {673--686},
     publisher = {mathdoc},
     volume = {65},
     number = {4},
     year = {2001},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2001_65_4_a2/}
}
TY  - JOUR
AU  - V. I. Buslaev
TI  - On the Van Vleck theorem for regular $C$-fractions with limit-periodic coefficients
JO  - Izvestiya. Mathematics 
PY  - 2001
SP  - 673
EP  - 686
VL  - 65
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2001_65_4_a2/
LA  - en
ID  - IM2_2001_65_4_a2
ER  - 
%0 Journal Article
%A V. I. Buslaev
%T On the Van Vleck theorem for regular $C$-fractions with limit-periodic coefficients
%J Izvestiya. Mathematics 
%D 2001
%P 673-686
%V 65
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2001_65_4_a2/
%G en
%F IM2_2001_65_4_a2
V. I. Buslaev. On the Van Vleck theorem for regular $C$-fractions with limit-periodic coefficients. Izvestiya. Mathematics , Tome 65 (2001) no. 4, pp. 673-686. http://geodesic.mathdoc.fr/item/IM2_2001_65_4_a2/

[1] Vlek E. V., “On the conergence of algebraic continued fractions whose coefficients have limiting values”, Trans. Amer. Math. Soc., 5 (1904), 253–262 | DOI | MR

[2] Goluzin G. M., Geometricheskaya teoriya funktsii kompleksnogo peremennogo, Nauka, M., 1966 | MR

[3] Stahl H., “Orthogonal polynomials with complex valued weight function. I; II”, Constr. approx., 2 (1986), 225–240 ; 241–251 | DOI | MR | Zbl | Zbl

[4] Buslaev V. I., “O teoreme Puankare i ee prilozheniyakh k voprosam skhodimosti tsepnykh drobei”, Matem. sb., 189:12 (1998), 13–28 | MR | Zbl

[5] Worpitsky J., “Untersuchungen über die Entwickelung der monodromen und monogenen Funktionen durch Kettenbruche”, Friedrichs-Gymnasium und Realschule Jahresbericht, Berlin, 1865, 3–39

[6] Dzhouns U., Tron V., Nepreryvnye drobi, Mir, M., 1985 | MR

[7] Polya G., “Beitrag zur Verallgemeinerung des Verzerrungssatzes auf mehrfach zusammenhängende Gebiete, III”, Sitzungsber. Preuss. Akad. Wiss. Phys.-math. Kl., 1929, 55–62 | Zbl