On the Van Vleck theorem for regular $C$-fractions with limit-periodic coefficients
Izvestiya. Mathematics , Tome 65 (2001) no. 4, pp. 673-686

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we investigate the convergence set of a regular $C$-fraction with limit-periodic coefficients. This investigation is based on a general assertion concerning the convergence of composites of linear-fractional transformations whose coefficients are limit-periodic functions depending holomorphically on a parameter. We show that the singularity set of such a $C$-fraction possesses an extremal property stated in terms of the transfinite diameter (capacity) of sets.
@article{IM2_2001_65_4_a2,
     author = {V. I. Buslaev},
     title = {On the {Van} {Vleck} theorem for regular $C$-fractions with limit-periodic coefficients},
     journal = {Izvestiya. Mathematics },
     pages = {673--686},
     publisher = {mathdoc},
     volume = {65},
     number = {4},
     year = {2001},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2001_65_4_a2/}
}
TY  - JOUR
AU  - V. I. Buslaev
TI  - On the Van Vleck theorem for regular $C$-fractions with limit-periodic coefficients
JO  - Izvestiya. Mathematics 
PY  - 2001
SP  - 673
EP  - 686
VL  - 65
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2001_65_4_a2/
LA  - en
ID  - IM2_2001_65_4_a2
ER  - 
%0 Journal Article
%A V. I. Buslaev
%T On the Van Vleck theorem for regular $C$-fractions with limit-periodic coefficients
%J Izvestiya. Mathematics 
%D 2001
%P 673-686
%V 65
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2001_65_4_a2/
%G en
%F IM2_2001_65_4_a2
V. I. Buslaev. On the Van Vleck theorem for regular $C$-fractions with limit-periodic coefficients. Izvestiya. Mathematics , Tome 65 (2001) no. 4, pp. 673-686. http://geodesic.mathdoc.fr/item/IM2_2001_65_4_a2/