Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_2001_65_4_a1, author = {D. Bertrand and W. V. Zudilin}, title = {Derivatives of {Siegel} modular forms and exponential functions}, journal = {Izvestiya. Mathematics }, pages = {659--672}, publisher = {mathdoc}, volume = {65}, number = {4}, year = {2001}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_2001_65_4_a1/} }
D. Bertrand; W. V. Zudilin. Derivatives of Siegel modular forms and exponential functions. Izvestiya. Mathematics , Tome 65 (2001) no. 4, pp. 659-672. http://geodesic.mathdoc.fr/item/IM2_2001_65_4_a1/
[1] Mahler K., “On algebraic differential equations satisfied by automorphic functions”, J. Austral. Math. Soc., 10 (1969), 445–450 | DOI | MR | Zbl
[2] Nishioka K., “A conjecture of Mahler on automorphic functions”, Arch. Math. (Basel), 53:1 (1989), 46–51 | MR | Zbl
[3] Bertrand D., Zudilin W., “On the transcendence degree of the differential field generated by Siegel modular forms”, Prépubl. de l'Institut de Math. de Jussieu, 248, 2000 ; arXiv: math/0006176 | Zbl
[4] Zudilin W., Number theory casting a look at the mirror, Preprint, 2000, submitted for publication ; arXiv: math/0008237 | Zbl
[5] Van der Varden B. L., Algebra, Nauka, M., 1976 | MR
[6] Ax J., “On Schanuel's conjectures”, Ann. of Math. (2), 93 (1971), 252–268 | DOI | MR | Zbl
[7] Kolchin E. R., Differential algebra and algebraic groups, Pure Appl. Math., 54, Academic Press, N. Y.–London, 1973 | MR | Zbl
[8] Uitteker E. T., Vatson Dzh. N., Kurs sovremennogo analiza, T. 2, Fizmatlit, M., 1963
[9] Kontsevich M., “Product formulas for modular forms on $O(2,n)$ (after R. Borcherds)”, [Exp. no. 821], Astérisque, 245 (1997), 41–56 ; Sém. Bourbaki, Exp. 820–834, 1996/97 ; arXiv: alg-geom/9709006 | MR | Zbl | MR
[10] Gritsenko V. A., Nikulin V. V., “Automorphic forms and Lorentzian Kac–Moody algebras, II”, Internat. J. Math., 9:2 (1998), 201–275 | DOI | MR | Zbl