Polynomial models of real manifolds
Izvestiya. Mathematics , Tome 65 (2001) no. 4, pp. 641-657

Voir la notice de l'article provenant de la source Math-Net.Ru

We construct polynomial models for germs of real submanifolds in complex space. It was shown earlier that the properties of models of degree 3 (for appropriate values of the codimension) are similar to well-known properties of tangent quadrics. In this paper we construct models of arbitrarily high degree. They have all these properties with one exception: from degree 5 onwards, they are not completely universal.
@article{IM2_2001_65_4_a0,
     author = {V. K. Beloshapka},
     title = {Polynomial models of real manifolds},
     journal = {Izvestiya. Mathematics },
     pages = {641--657},
     publisher = {mathdoc},
     volume = {65},
     number = {4},
     year = {2001},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2001_65_4_a0/}
}
TY  - JOUR
AU  - V. K. Beloshapka
TI  - Polynomial models of real manifolds
JO  - Izvestiya. Mathematics 
PY  - 2001
SP  - 641
EP  - 657
VL  - 65
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2001_65_4_a0/
LA  - en
ID  - IM2_2001_65_4_a0
ER  - 
%0 Journal Article
%A V. K. Beloshapka
%T Polynomial models of real manifolds
%J Izvestiya. Mathematics 
%D 2001
%P 641-657
%V 65
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2001_65_4_a0/
%G en
%F IM2_2001_65_4_a0
V. K. Beloshapka. Polynomial models of real manifolds. Izvestiya. Mathematics , Tome 65 (2001) no. 4, pp. 641-657. http://geodesic.mathdoc.fr/item/IM2_2001_65_4_a0/