Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_2001_65_4_a0, author = {V. K. Beloshapka}, title = {Polynomial models of real manifolds}, journal = {Izvestiya. Mathematics }, pages = {641--657}, publisher = {mathdoc}, volume = {65}, number = {4}, year = {2001}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_2001_65_4_a0/} }
V. K. Beloshapka. Polynomial models of real manifolds. Izvestiya. Mathematics , Tome 65 (2001) no. 4, pp. 641-657. http://geodesic.mathdoc.fr/item/IM2_2001_65_4_a0/
[1] Beloshapka V. K., “Konechnomernost gruppy avtomorfizmov veschestvennoi poverkhnosti”, Izv. AN SSSR. Ser. matem., 52:2 (1988), 437–442 | MR | Zbl
[2] Beloshapka V. K., “O golomorfnykh preobrazovaniyakh kvadriki”, Matem. sb., 1991, no. 2, 203–219 | MR | Zbl
[3] Beloshapka V. K., “Kubicheskaya model veschestvennogo mnogoobraziya”, Matem. zametki, 70:4 (2001), 503–519 | MR | Zbl
[4] Beloshapka V. K., “$CR$-Varieties of the Type $(1,2)$ as Varieties of “Super-High” Codimension”, Russian Journal of Mathematical Physics, 5:2 (1998), 399–404 | MR
[5] Tumanov A. E., “Konechnomernost gruppy $CR$-avtomorfizmov standartnogo $CR$-mnogoobraziya i sobstvennye golomorfnye otobrazheniya oblastei Zigelya”, Izv. AN SSSR. Ser. matem., 52:3 (1988), 651–659 | MR | Zbl
[6] Chirka E. M., “Vvedenie v geometriyu $CR$-mnogoobrazii”, UMN, 46:1(277) (1991), 81–164 | MR | Zbl
[7] Shananina E. N., “Modeli $CR$-mnogoobrazii tipa $(1,k)$ pri $3 \leq k \leq 7$ i ikh avtomorfizmy”, Matem. zametki, 67:3 (2000), 452–459 | MR | Zbl
[8] Landau L. D., Lifshits E. M., Kvantovaya mekhanika. Kratkii teoreticheskii kurs, T. 2, Nauka, M., 1972 | MR
[9] Baouendi M. S., Ebenfelt P., Rothschild L. P., Local geometric properties of real submanofolds in complex space, Preprint / Trita-Mat-1999-20 (Nov. 1999), Rojal institute of technology, Stockholm, Sweden | MR