Polynomial models of real manifolds
Izvestiya. Mathematics , Tome 65 (2001) no. 4, pp. 641-657.

Voir la notice de l'article provenant de la source Math-Net.Ru

We construct polynomial models for germs of real submanifolds in complex space. It was shown earlier that the properties of models of degree 3 (for appropriate values of the codimension) are similar to well-known properties of tangent quadrics. In this paper we construct models of arbitrarily high degree. They have all these properties with one exception: from degree 5 onwards, they are not completely universal.
@article{IM2_2001_65_4_a0,
     author = {V. K. Beloshapka},
     title = {Polynomial models of real manifolds},
     journal = {Izvestiya. Mathematics },
     pages = {641--657},
     publisher = {mathdoc},
     volume = {65},
     number = {4},
     year = {2001},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2001_65_4_a0/}
}
TY  - JOUR
AU  - V. K. Beloshapka
TI  - Polynomial models of real manifolds
JO  - Izvestiya. Mathematics 
PY  - 2001
SP  - 641
EP  - 657
VL  - 65
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2001_65_4_a0/
LA  - en
ID  - IM2_2001_65_4_a0
ER  - 
%0 Journal Article
%A V. K. Beloshapka
%T Polynomial models of real manifolds
%J Izvestiya. Mathematics 
%D 2001
%P 641-657
%V 65
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2001_65_4_a0/
%G en
%F IM2_2001_65_4_a0
V. K. Beloshapka. Polynomial models of real manifolds. Izvestiya. Mathematics , Tome 65 (2001) no. 4, pp. 641-657. http://geodesic.mathdoc.fr/item/IM2_2001_65_4_a0/

[1] Beloshapka V. K., “Konechnomernost gruppy avtomorfizmov veschestvennoi poverkhnosti”, Izv. AN SSSR. Ser. matem., 52:2 (1988), 437–442 | MR | Zbl

[2] Beloshapka V. K., “O golomorfnykh preobrazovaniyakh kvadriki”, Matem. sb., 1991, no. 2, 203–219 | MR | Zbl

[3] Beloshapka V. K., “Kubicheskaya model veschestvennogo mnogoobraziya”, Matem. zametki, 70:4 (2001), 503–519 | MR | Zbl

[4] Beloshapka V. K., “$CR$-Varieties of the Type $(1,2)$ as Varieties of “Super-High” Codimension”, Russian Journal of Mathematical Physics, 5:2 (1998), 399–404 | MR

[5] Tumanov A. E., “Konechnomernost gruppy $CR$-avtomorfizmov standartnogo $CR$-mnogoobraziya i sobstvennye golomorfnye otobrazheniya oblastei Zigelya”, Izv. AN SSSR. Ser. matem., 52:3 (1988), 651–659 | MR | Zbl

[6] Chirka E. M., “Vvedenie v geometriyu $CR$-mnogoobrazii”, UMN, 46:1(277) (1991), 81–164 | MR | Zbl

[7] Shananina E. N., “Modeli $CR$-mnogoobrazii tipa $(1,k)$ pri $3 \leq k \leq 7$ i ikh avtomorfizmy”, Matem. zametki, 67:3 (2000), 452–459 | MR | Zbl

[8] Landau L. D., Lifshits E. M., Kvantovaya mekhanika. Kratkii teoreticheskii kurs, T. 2, Nauka, M., 1972 | MR

[9] Baouendi M. S., Ebenfelt P., Rothschild L. P., Local geometric properties of real submanofolds in complex space, Preprint / Trita-Mat-1999-20 (Nov. 1999), Rojal institute of technology, Stockholm, Sweden | MR