$A$-integrable martingale sequences and Walsh series
Izvestiya. Mathematics , Tome 65 (2001) no. 3, pp. 607-615
Voir la notice de l'article provenant de la source Math-Net.Ru
A sufficient condition for a Walsh series converging to an $A$-integrable function $f$ to be the $A$-Fourier's series of $f$ is stated in terms of uniform $A$-integrability of a martingale
subsequence of partial sums of the Walsh series. Moreover, the existence is proved of a Walsh series that converges almost everywhere to an $A$-integrable function and is not the
$A$-Fourier series of its sum.
@article{IM2_2001_65_3_a9,
author = {V. A. Skvortsov},
title = {$A$-integrable martingale sequences and {Walsh} series},
journal = {Izvestiya. Mathematics },
pages = {607--615},
publisher = {mathdoc},
volume = {65},
number = {3},
year = {2001},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_2001_65_3_a9/}
}
V. A. Skvortsov. $A$-integrable martingale sequences and Walsh series. Izvestiya. Mathematics , Tome 65 (2001) no. 3, pp. 607-615. http://geodesic.mathdoc.fr/item/IM2_2001_65_3_a9/