$A$-integrable martingale sequences and Walsh series
Izvestiya. Mathematics , Tome 65 (2001) no. 3, pp. 607-615

Voir la notice de l'article provenant de la source Math-Net.Ru

A sufficient condition for a Walsh series converging to an $A$-integrable function $f$ to be the $A$-Fourier's series of $f$ is stated in terms of uniform $A$-integrability of a martingale subsequence of partial sums of the Walsh series. Moreover, the existence is proved of a Walsh series that converges almost everywhere to an $A$-integrable function and is not the $A$-Fourier series of its sum.
@article{IM2_2001_65_3_a9,
     author = {V. A. Skvortsov},
     title = {$A$-integrable martingale sequences and {Walsh} series},
     journal = {Izvestiya. Mathematics },
     pages = {607--615},
     publisher = {mathdoc},
     volume = {65},
     number = {3},
     year = {2001},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2001_65_3_a9/}
}
TY  - JOUR
AU  - V. A. Skvortsov
TI  - $A$-integrable martingale sequences and Walsh series
JO  - Izvestiya. Mathematics 
PY  - 2001
SP  - 607
EP  - 615
VL  - 65
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2001_65_3_a9/
LA  - en
ID  - IM2_2001_65_3_a9
ER  - 
%0 Journal Article
%A V. A. Skvortsov
%T $A$-integrable martingale sequences and Walsh series
%J Izvestiya. Mathematics 
%D 2001
%P 607-615
%V 65
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2001_65_3_a9/
%G en
%F IM2_2001_65_3_a9
V. A. Skvortsov. $A$-integrable martingale sequences and Walsh series. Izvestiya. Mathematics , Tome 65 (2001) no. 3, pp. 607-615. http://geodesic.mathdoc.fr/item/IM2_2001_65_3_a9/