$A$-integrable martingale sequences and Walsh series
Izvestiya. Mathematics , Tome 65 (2001) no. 3, pp. 607-615.

Voir la notice de l'article provenant de la source Math-Net.Ru

A sufficient condition for a Walsh series converging to an $A$-integrable function $f$ to be the $A$-Fourier's series of $f$ is stated in terms of uniform $A$-integrability of a martingale subsequence of partial sums of the Walsh series. Moreover, the existence is proved of a Walsh series that converges almost everywhere to an $A$-integrable function and is not the $A$-Fourier series of its sum.
@article{IM2_2001_65_3_a9,
     author = {V. A. Skvortsov},
     title = {$A$-integrable martingale sequences and {Walsh} series},
     journal = {Izvestiya. Mathematics },
     pages = {607--615},
     publisher = {mathdoc},
     volume = {65},
     number = {3},
     year = {2001},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2001_65_3_a9/}
}
TY  - JOUR
AU  - V. A. Skvortsov
TI  - $A$-integrable martingale sequences and Walsh series
JO  - Izvestiya. Mathematics 
PY  - 2001
SP  - 607
EP  - 615
VL  - 65
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2001_65_3_a9/
LA  - en
ID  - IM2_2001_65_3_a9
ER  - 
%0 Journal Article
%A V. A. Skvortsov
%T $A$-integrable martingale sequences and Walsh series
%J Izvestiya. Mathematics 
%D 2001
%P 607-615
%V 65
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2001_65_3_a9/
%G en
%F IM2_2001_65_3_a9
V. A. Skvortsov. $A$-integrable martingale sequences and Walsh series. Izvestiya. Mathematics , Tome 65 (2001) no. 3, pp. 607-615. http://geodesic.mathdoc.fr/item/IM2_2001_65_3_a9/

[1] Ash R. B., Real Analysis and Probability, Academic Press, N. Y., 1972 | MR

[2] Chow Y. S., Teicher H., Probability Theory, Springer-Verlag, N. Y., 1988 | MR

[3] Loeve M., Probability Theory, V. II, Springer-Verlag, N. Y., 1978 | MR | Zbl

[4] Kolmogorov A. N., Osnovaniya teorii veroyatnosti, Nauka, M., 1998

[5] Ulyanov P. L., “Primenenie $A$-integrirovaniya k odnomu klassu trigonometricheskikh ryadov”, Matem. sb., 35 (71) (1954), 469–490 | MR | Zbl

[6] Ulyanov P. L., “$A$-integral i sopryazhennye funktsii”, Uchenye zap. MGU. Matematika, 181 (1956), 139–157 | MR

[7] Bari N. K., Trigonometricheskie ryady, Fizmatgiz, M., 1961 | MR

[8] Lee L. P., Lanzhou Lectures on Henstock Integration, World Scientific, Singapore–New Jersey–London, 1989 | MR

[9] Skvortsov V. A., “Martingale closure theorem for $A$-integrable martingal sequenses”, Real Analysis Exchange, 24:2 (1998–99), 815–820 | MR | Zbl

[10] Gundy R. F., “Martingale theory and positive convergence of certain orthogonal series”, Trans. Amer. Math. Soc., 124:2 (1966), 228–248 | DOI | MR | Zbl

[11] Skvortsov V. A., Kostin V. V., “Martingalnye posledovatelnosti v teorii ortogonalnykh ryadov”, Vestn. MGU. Ser. I, 1999, no. 6, 50–53 | MR | Zbl

[12] Golubov B. I., Efimov A. V., Skvortsov V. A., Ryady i preobrazovaniya Uolsha, Nauka, M., 1987 | MR | Zbl

[13] Skvortsov V. A., “O ryadakh Khaara, skhodyaschikhsya po podposledovatelnostyam chastichnykh summ”, DAN SSSR, 183:6 (1968), 784–786 | MR | Zbl

[14] Skvortsov V. A., “Some properties of dyadic derivatives”, Lecture notes in Math., 1419, 1989, 167–179 | MR

[15] Rubinshtein A. I., “$A$-integral i ryady po sisteme Uolsha”, UMN, 18 (1963), 191–197 | MR