On polynomial automorphisms of affine spaces
Izvestiya. Mathematics , Tome 65 (2001) no. 3, pp. 569-587

Voir la notice de l'article provenant de la source Math-Net.Ru

In the first part of this paper we prove some general results on the linearizability of algebraic group actions on $\mathbb A^n$. As an application, we get a method of construction and concrete examples of non-linearizable algebraic actions of infinite non-reductive insoluble algebraic groups on $\mathbb A^n$ with a fixed point. In the second part we use these general results to prove that every effective algebraic action of a connected reductive algebraic group $G$ on the $n$-dimensional affine space $\mathbb A^n$ over an algebraically closed field $k$ of characteristic zero is linearizable in each of the following cases: 1) $n=3$; 2) $n=4$ and $G$ is not a one- or two-dimensional torus. In particular, this means that $\operatorname{GL}_3(k)$ is the unique (up to conjugacy) maximal connected reductive subgroup of the automorphism group of the algebra of polynomials in three variables over $k$.
@article{IM2_2001_65_3_a7,
     author = {V. L. Popov},
     title = {On polynomial automorphisms of affine spaces},
     journal = {Izvestiya. Mathematics },
     pages = {569--587},
     publisher = {mathdoc},
     volume = {65},
     number = {3},
     year = {2001},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2001_65_3_a7/}
}
TY  - JOUR
AU  - V. L. Popov
TI  - On polynomial automorphisms of affine spaces
JO  - Izvestiya. Mathematics 
PY  - 2001
SP  - 569
EP  - 587
VL  - 65
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2001_65_3_a7/
LA  - en
ID  - IM2_2001_65_3_a7
ER  - 
%0 Journal Article
%A V. L. Popov
%T On polynomial automorphisms of affine spaces
%J Izvestiya. Mathematics 
%D 2001
%P 569-587
%V 65
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2001_65_3_a7/
%G en
%F IM2_2001_65_3_a7
V. L. Popov. On polynomial automorphisms of affine spaces. Izvestiya. Mathematics , Tome 65 (2001) no. 3, pp. 569-587. http://geodesic.mathdoc.fr/item/IM2_2001_65_3_a7/