On graded algebras of global dimension~3
Izvestiya. Mathematics , Tome 65 (2001) no. 3, pp. 557-568.

Voir la notice de l'article provenant de la source Math-Net.Ru

Assume that a graded associative algebra $A$ over a field $k$ is minimally presented as the quotient algebra of a free algebra $F$ by the ideal $I$ generated by a set $f$ of homogeneous elements. We study the following two extensions of $A$: the algebra $\overline F=F/I\oplus I/I^2\oplus\dotsb$ associated with $F$ with respect to the $I$-adic filtration, and the homology algebra $H$ of the Shafarevich complex $\operatorname{Sh}(f,F)$ (which is a non-commutative version of the Koszul complex). We obtain several characterizations of algebras of global dimension 3. In particular, the $A$-algebra $H$ in this case is free, and the algebra $\overline F$ is isomorphic to the quotient algebra of a free $A$-algebra by the ideal generated by a so-called strongly free (or inert) set.
@article{IM2_2001_65_3_a6,
     author = {D. I. Piontkovskii},
     title = {On graded algebras of global dimension~3},
     journal = {Izvestiya. Mathematics },
     pages = {557--568},
     publisher = {mathdoc},
     volume = {65},
     number = {3},
     year = {2001},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2001_65_3_a6/}
}
TY  - JOUR
AU  - D. I. Piontkovskii
TI  - On graded algebras of global dimension~3
JO  - Izvestiya. Mathematics 
PY  - 2001
SP  - 557
EP  - 568
VL  - 65
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2001_65_3_a6/
LA  - en
ID  - IM2_2001_65_3_a6
ER  - 
%0 Journal Article
%A D. I. Piontkovskii
%T On graded algebras of global dimension~3
%J Izvestiya. Mathematics 
%D 2001
%P 557-568
%V 65
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2001_65_3_a6/
%G en
%F IM2_2001_65_3_a6
D. I. Piontkovskii. On graded algebras of global dimension~3. Izvestiya. Mathematics , Tome 65 (2001) no. 3, pp. 557-568. http://geodesic.mathdoc.fr/item/IM2_2001_65_3_a6/

[1] Anick D., “Non-commutative graded algebras and their Hilbert series”, J. Algebra, 78 (1982), 120–140 | DOI | MR

[2] Golod E. S., Shafarevich I. R., “O bashne polei klassov”, Izv. AN SSSR. Ser. matem., 28:2 (1964), 261–272 | MR | Zbl

[3] Golod E. S., “Standard bases and homology”, Lect. Notes Math., 1352 (1988), 88–96 | DOI | MR

[4] Govorov V. E., “O graduirovannykh algebrakh”, Matem. zametki, 12:2 (1972), 197–204 | MR | Zbl

[5] Halperin S., Lemaire J.-M., “Suites inertes dans les algèbres de Lie graduées”, Math. Scand., 61:1 (1987), 39–67 | MR | Zbl

[6] Anick D., “Inert sets and the Lie algebra associated to a group”, J. Algebra, 111 (1987), 154–165 | DOI | MR | Zbl

[7] Golod E. S., “Gomologii kompleksa Shafarevicha i nekommutativnye polnye peresecheniya”, Fundam. i prikl. matematika, 5:1 (1999), 85–95 | MR | Zbl

[8] Golod E. S., “Ob algebre gomologii kompleksa Shafarevicha svobodnoi algebry”, Fundam. i prikl. matematika, 5:1 (1999), 97–100 | MR | Zbl

[9] Burbaki N., Gomologicheskaya algebra, Nauka, M., 1987 | MR

[10] Piontkovskii D. I., “O ryadakh Gilberta i gomologiyakh $PI$-algebr”, Matem. sb., 189:11 (1998), 103–120 | MR | Zbl

[11] Kon P., Svobodnye koltsa i ikh svyazi, Mir, M., 1975 | MR

[12] Latyshev V. N., Kompyuternaya algebra. Standartnye bazisy, Izd-vo MGU, M., 1988 | Zbl

[13] Ufnarovskii V. A., “Kombinatornye i asimptoticheskie metody v algebre”, Sovremennaya matematika i ee prilozheniya, 57 (1990), 5–177 | MR