On graded algebras of global dimension~3
Izvestiya. Mathematics , Tome 65 (2001) no. 3, pp. 557-568

Voir la notice de l'article provenant de la source Math-Net.Ru

Assume that a graded associative algebra $A$ over a field $k$ is minimally presented as the quotient algebra of a free algebra $F$ by the ideal $I$ generated by a set $f$ of homogeneous elements. We study the following two extensions of $A$: the algebra $\overline F=F/I\oplus I/I^2\oplus\dotsb$ associated with $F$ with respect to the $I$-adic filtration, and the homology algebra $H$ of the Shafarevich complex $\operatorname{Sh}(f,F)$ (which is a non-commutative version of the Koszul complex). We obtain several characterizations of algebras of global dimension 3. In particular, the $A$-algebra $H$ in this case is free, and the algebra $\overline F$ is isomorphic to the quotient algebra of a free $A$-algebra by the ideal generated by a so-called strongly free (or inert) set.
@article{IM2_2001_65_3_a6,
     author = {D. I. Piontkovskii},
     title = {On graded algebras of global dimension~3},
     journal = {Izvestiya. Mathematics },
     pages = {557--568},
     publisher = {mathdoc},
     volume = {65},
     number = {3},
     year = {2001},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2001_65_3_a6/}
}
TY  - JOUR
AU  - D. I. Piontkovskii
TI  - On graded algebras of global dimension~3
JO  - Izvestiya. Mathematics 
PY  - 2001
SP  - 557
EP  - 568
VL  - 65
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2001_65_3_a6/
LA  - en
ID  - IM2_2001_65_3_a6
ER  - 
%0 Journal Article
%A D. I. Piontkovskii
%T On graded algebras of global dimension~3
%J Izvestiya. Mathematics 
%D 2001
%P 557-568
%V 65
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2001_65_3_a6/
%G en
%F IM2_2001_65_3_a6
D. I. Piontkovskii. On graded algebras of global dimension~3. Izvestiya. Mathematics , Tome 65 (2001) no. 3, pp. 557-568. http://geodesic.mathdoc.fr/item/IM2_2001_65_3_a6/