Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_2001_65_3_a5, author = {T. E. Panov}, title = {Hirzebruch genera of manifolds with torus action}, journal = {Izvestiya. Mathematics }, pages = {543--556}, publisher = {mathdoc}, volume = {65}, number = {3}, year = {2001}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_2001_65_3_a5/} }
T. E. Panov. Hirzebruch genera of manifolds with torus action. Izvestiya. Mathematics , Tome 65 (2001) no. 3, pp. 543-556. http://geodesic.mathdoc.fr/item/IM2_2001_65_3_a5/
[1] Atiyah M. F., Bott R., “A Lefschetz fixed point formula for elliptic complexes, I”, Ann. of Math., 86:2 (1967), 374–407 | DOI | MR | Zbl
[2] Atiyah M. F., Hirzebruch F., “Spin-manifolds and group actions”, Essays in Topology and Related Topics, Springer-Verlag, Berlin–Heidelberg–New York, 1970 | MR | Zbl
[3] Batyrev V. V., “Quantum Cohomology Rings of Toric Manifolds”, Journées de Géometrie Algébrique d'Orsay (Juillet 1992), Astérisque, 218, Sociéte Mathématique de France, Paris, 1993, 9–34 ; http://xxx.lanl.gov/abs/alg-geom/9310004 | MR | Zbl
[4] Bahri A., Bendersky M., “The $KO$-theory of toric manifolds”, Trans. Amer. Math. Soc., 352:3 (2000), 1191–1202 ; http://xxx.lanl.gov/abs/math.AT/9904087 | DOI | MR | Zbl
[5] Brensted A., Vvedenie v teoriyu vypuklykh mnogogrannikov, Mir, M., 1988 | MR
[6] Bukhshtaber V. M., Panov T. E., “Algebraicheskaya topologiya mnogoobrazii, opredelyaemykh prostymi mnogogrannikami”, UMN, 53:3 (1998), 195–196 | MR | Zbl
[7] Bukhshtaber V. M., Panov T. E., “Deistviya tora i kombinatorika mnogogrannikov”, Tr. MIRAN, 225 (1999), 96–131 ; http://xxx.lanl.gov/abs/math.AT/9909166 | MR
[8] Bukhshtaber V. M., Rei N., “Toricheskie mnogoobraziya i kompleksnye kobordizmy”, UMN, 53:2 (1998), 139–140 | MR | Zbl
[9] Buchstaber V. M., Ray N., Tangential structures on toric manifolds, and connected sums of polytopes, Preprint No 2000/5, UMIST, Manchester, 2000 ; Internat. Math. Res. Notices, 2001 (to appear) ; \unskip http://xxx.lanl.gov/abs/math.AT/0010025 | MR
[10] Danilov V. I., “Geometriya toricheskikh mnogoobrazii”, UMN, 33:2 (1978), 85–134 | MR | Zbl
[11] Davis M., Januszkiewicz T., “Convex polytopes, Coxeter orbifolds and torus actions”, Duke Math. J., 62:2 (1991), 417–451 | DOI | MR | Zbl
[12] Dobrinskaya N., “Problema klassifikatsii kvazitoricheskikh mnogoobrazii nad zadannym prostym mnogogrannikom”, Funktsion. analiz i ego prilozh., 35:2 (2001), 3–11 | MR | Zbl
[13] Fulton W., Introduction to Toric Varieties, Princeton Univ. Press, Princeton, N.J., 1993 | MR | Zbl
[14] Hirzebruch F., Berger T., Jung R., Manifolds and Modular Forms, A Publication of the Max-Planc-Institut für Mathematik, Bonn, 1994
[15] Khovanskii A. G., “Giperploskie secheniya mnogogrannikov”, Funktsion. analiz i ego prilozh., 20:1 (1986), 50–61 | MR
[16] Krichever I. M., “Formalnye gruppy i formula Ati–Khirtsebrukha”, Izv. AN SSSR. Ser. matem., 38:6 (1974), 1289–1304 | MR | Zbl
[17] Panov T. E., “Kombinatornye formuly dlya $\chi_y$-roda poliorientirovannogo kvazitoricheskogo mnogoobraziya”, UMN, 54:5 (1999), 169–170 | MR | Zbl