Hirzebruch genera of manifolds with torus action
Izvestiya. Mathematics , Tome 65 (2001) no. 3, pp. 543-556.

Voir la notice de l'article provenant de la source Math-Net.Ru

A quasitoric manifold is a smooth $2n$-manifold $M^{2n}$ with an action of the compact torus $T^n$ such that the action is locally isomorphic to the standard action of $T^n$ on $\mathbb C^n$ and the orbit space is diffeomorphic, as a manifold with corners, to a simple polytope $P^n$. The name refers to the fact that topological and combinatorial properties of quasitoric manifolds are similar to those of non-singular algebraic toric varieties (or toric manifolds). Unlike toric varieties, quasitoric manifolds may fail to be complex. However, they always admit a stably (or weakly almost) complex structure, and their cobordism classes generate the complex cobordism ring. Buchstaber and Ray have recently shown that the stably complex structure on a quasitoric manifold is determined in purely combinatorial terms, namely, by an orientation of the polytope and a function from the set of codimension-one faces of the polytope to primitive vectors of the integer lattice. We calculate the $\chi_y$-genus of a quasitoric manifold with a fixed stably complex structure in terms of the corresponding combinatorial data. In particular, this gives explicit formulae for the classical Todd genus and the signature. We also compare our results with well-known facts in the theory of toric varieties.
@article{IM2_2001_65_3_a5,
     author = {T. E. Panov},
     title = {Hirzebruch genera of manifolds with torus action},
     journal = {Izvestiya. Mathematics },
     pages = {543--556},
     publisher = {mathdoc},
     volume = {65},
     number = {3},
     year = {2001},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2001_65_3_a5/}
}
TY  - JOUR
AU  - T. E. Panov
TI  - Hirzebruch genera of manifolds with torus action
JO  - Izvestiya. Mathematics 
PY  - 2001
SP  - 543
EP  - 556
VL  - 65
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2001_65_3_a5/
LA  - en
ID  - IM2_2001_65_3_a5
ER  - 
%0 Journal Article
%A T. E. Panov
%T Hirzebruch genera of manifolds with torus action
%J Izvestiya. Mathematics 
%D 2001
%P 543-556
%V 65
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2001_65_3_a5/
%G en
%F IM2_2001_65_3_a5
T. E. Panov. Hirzebruch genera of manifolds with torus action. Izvestiya. Mathematics , Tome 65 (2001) no. 3, pp. 543-556. http://geodesic.mathdoc.fr/item/IM2_2001_65_3_a5/

[1] Atiyah M. F., Bott R., “A Lefschetz fixed point formula for elliptic complexes, I”, Ann. of Math., 86:2 (1967), 374–407 | DOI | MR | Zbl

[2] Atiyah M. F., Hirzebruch F., “Spin-manifolds and group actions”, Essays in Topology and Related Topics, Springer-Verlag, Berlin–Heidelberg–New York, 1970 | MR | Zbl

[3] Batyrev V. V., “Quantum Cohomology Rings of Toric Manifolds”, Journées de Géometrie Algébrique d'Orsay (Juillet 1992), Astérisque, 218, Sociéte Mathématique de France, Paris, 1993, 9–34 ; http://xxx.lanl.gov/abs/alg-geom/9310004 | MR | Zbl

[4] Bahri A., Bendersky M., “The $KO$-theory of toric manifolds”, Trans. Amer. Math. Soc., 352:3 (2000), 1191–1202 ; http://xxx.lanl.gov/abs/math.AT/9904087 | DOI | MR | Zbl

[5] Brensted A., Vvedenie v teoriyu vypuklykh mnogogrannikov, Mir, M., 1988 | MR

[6] Bukhshtaber V. M., Panov T. E., “Algebraicheskaya topologiya mnogoobrazii, opredelyaemykh prostymi mnogogrannikami”, UMN, 53:3 (1998), 195–196 | MR | Zbl

[7] Bukhshtaber V. M., Panov T. E., “Deistviya tora i kombinatorika mnogogrannikov”, Tr. MIRAN, 225 (1999), 96–131 ; http://xxx.lanl.gov/abs/math.AT/9909166 | MR

[8] Bukhshtaber V. M., Rei N., “Toricheskie mnogoobraziya i kompleksnye kobordizmy”, UMN, 53:2 (1998), 139–140 | MR | Zbl

[9] Buchstaber V. M., Ray N., Tangential structures on toric manifolds, and connected sums of polytopes, Preprint No 2000/5, UMIST, Manchester, 2000 ; Internat. Math. Res. Notices, 2001 (to appear) ; \unskip http://xxx.lanl.gov/abs/math.AT/0010025 | MR

[10] Danilov V. I., “Geometriya toricheskikh mnogoobrazii”, UMN, 33:2 (1978), 85–134 | MR | Zbl

[11] Davis M., Januszkiewicz T., “Convex polytopes, Coxeter orbifolds and torus actions”, Duke Math. J., 62:2 (1991), 417–451 | DOI | MR | Zbl

[12] Dobrinskaya N., “Problema klassifikatsii kvazitoricheskikh mnogoobrazii nad zadannym prostym mnogogrannikom”, Funktsion. analiz i ego prilozh., 35:2 (2001), 3–11 | MR | Zbl

[13] Fulton W., Introduction to Toric Varieties, Princeton Univ. Press, Princeton, N.J., 1993 | MR | Zbl

[14] Hirzebruch F., Berger T., Jung R., Manifolds and Modular Forms, A Publication of the Max-Planc-Institut für Mathematik, Bonn, 1994

[15] Khovanskii A. G., “Giperploskie secheniya mnogogrannikov”, Funktsion. analiz i ego prilozh., 20:1 (1986), 50–61 | MR

[16] Krichever I. M., “Formalnye gruppy i formula Ati–Khirtsebrukha”, Izv. AN SSSR. Ser. matem., 38:6 (1974), 1289–1304 | MR | Zbl

[17] Panov T. E., “Kombinatornye formuly dlya $\chi_y$-roda poliorientirovannogo kvazitoricheskogo mnogoobraziya”, UMN, 54:5 (1999), 169–170 | MR | Zbl