Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_2001_65_3_a4, author = {V. A. Kolyvagin}, title = {Fermat's equation over the tower of cyclotomic fields}, journal = {Izvestiya. Mathematics }, pages = {503--541}, publisher = {mathdoc}, volume = {65}, number = {3}, year = {2001}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_2001_65_3_a4/} }
V. A. Kolyvagin. Fermat's equation over the tower of cyclotomic fields. Izvestiya. Mathematics , Tome 65 (2001) no. 3, pp. 503-541. http://geodesic.mathdoc.fr/item/IM2_2001_65_3_a4/
[1] Kummer E. E., “Allgemeiner Beweis des Fermat'schen Satzes, dass die Gleichung $x^{\lambda}+y^{\lambda}=z^{\lambda}$ durch ganze Zahlen unlösbar ist, für alle diejenigen Potenz-Exponenten $\lambda$, wehche ungeza Primzahlen sind und in den Zählern der ersten $(\lambda-3)/2$ Bernoulli'schen Zahlen als Factoren nicht vorkommen”, J. für Math., 40 (1850), 130–138
[2] Borevich Z. I., Shafarevich I. R., Teoriya chisel, Nauka, M., 1985 | MR | Zbl
[3] Kolyvagin V. A., “Uravneniya Ferma nad krugovymi polyami”, Tr. Matem. in-ta im. V. A. Steklova RAN, 208 (1995), 163–185 | MR | Zbl
[4] Kolyvagin V. A., “O pervom sluchae teoremy Ferma dlya krugovykh polei”, Izv. RAN. Ser. matem., 63:5 (1999), 147–158 | MR | Zbl
[5] Krasner M., “Sur ie premier cas du the theoreme de Fermat”, C. R. Acad. Sci. Paris, 199 (1934), 256–258 | Zbl
[6] Eichler M., “Eine Bemerkung zur Fermat'schen Vermutung”, Acta arithm., 11 (1965), 129–134 | MR
[7] Vandiver H. S., “On Fermat's last theorem”, Trans. Amer. Math. Soc., 31 (1929), 613–642 | DOI | MR | Zbl
[8] Kolyvagin V. A., “Formalnye gruppy i simvol normennogo vycheta”, Izv. AN SSSR. Ser. matem., 43:5 (1979), 1054–1120 | MR | Zbl
[9] Iwasawa K., “Explicit formulas for the norm residue symbol”, J. Math. Soc. Japan, 20:1–2 (1968), 151–165 | MR | Zbl
[10] Leng S., Algebra, Mir, M., 1968
[11] Wada H., “Criteria of Kummer”, Tokyo J. of Math., 3:1 (1980), 173–176 | MR | Zbl
[12] Keller W., Löh G., “The criteria of Kummer and Mirimanoff extended to include 22 consecutive irregular pairs”, Tokyo J. of Math., 6 (1983), 397–402 | MR | Zbl
[13] Beitmen G., Erdeii A., Vysshie transtsendentnye funktsii, T. I, Nauka, M., 1973
[14] Wiles A., “Modular curves and Fermat's Last Theorem”, Annals of Math., 141 (1995), 443–551 | DOI | MR | Zbl