Fermat's equation over the tower of cyclotomic fields
Izvestiya. Mathematics , Tome 65 (2001) no. 3, pp. 503-541.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $l>3$ be a prime, let $L_n=\mathbb Q\bigl(\root{l^{n+1}}\of 1\,\bigr)$ let $R_n$ be the maximal real subfield of $L_n$, and let $H_n$ be the maximal $l$-subextension of $R_n$. We define effectively calculable integer-valued functions $\varphi_1(l)$, $\varphi_2(l)$ and $\varphi_3(l)$ such that $-1\leqslant \varphi_1(l)\leqslant \varphi_2(l)\leqslant \varphi_3(l)\leqslant (l-3)/2-I(l)$, where $I(l)$ is the index of irregularity of $l$. For $\varphi_1(l)\geqslant 0$ we prove the first case of Fermat's theorem for $L_{\varphi_1(l)}$, $R_{\varphi_2(l)}$$H_{\varphi_3(l)}$ and $l$. We obtain explicit lower estimates for $\varphi_1(l)$, $\varphi_2(l)$ and $\varphi_3(l)$. For regular $l$ (when $\varphi_1(l)\geqslant 1$) we prove the second case of Fermat's theorem for $L_{(l-3)/2}$ and $l$ and Fermat's theorem for $L_{\varphi_1(l)}$$R_{\varphi_2(l)}$ and $l$, generalizing the classical result on the validity of Fermat's theorem for $L_0$ and regular $l$. We also obtain some other results on solutions of Fermat's equation $x^l+y^l+z^l=0$ over $L_n$, $R_n$ and $H_n$.
@article{IM2_2001_65_3_a4,
     author = {V. A. Kolyvagin},
     title = {Fermat's equation over the tower of cyclotomic fields},
     journal = {Izvestiya. Mathematics },
     pages = {503--541},
     publisher = {mathdoc},
     volume = {65},
     number = {3},
     year = {2001},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2001_65_3_a4/}
}
TY  - JOUR
AU  - V. A. Kolyvagin
TI  - Fermat's equation over the tower of cyclotomic fields
JO  - Izvestiya. Mathematics 
PY  - 2001
SP  - 503
EP  - 541
VL  - 65
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2001_65_3_a4/
LA  - en
ID  - IM2_2001_65_3_a4
ER  - 
%0 Journal Article
%A V. A. Kolyvagin
%T Fermat's equation over the tower of cyclotomic fields
%J Izvestiya. Mathematics 
%D 2001
%P 503-541
%V 65
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2001_65_3_a4/
%G en
%F IM2_2001_65_3_a4
V. A. Kolyvagin. Fermat's equation over the tower of cyclotomic fields. Izvestiya. Mathematics , Tome 65 (2001) no. 3, pp. 503-541. http://geodesic.mathdoc.fr/item/IM2_2001_65_3_a4/

[1] Kummer E. E., “Allgemeiner Beweis des Fermat'schen Satzes, dass die Gleichung $x^{\lambda}+y^{\lambda}=z^{\lambda}$ durch ganze Zahlen unlösbar ist, für alle diejenigen Potenz-Exponenten $\lambda$, wehche ungeza Primzahlen sind und in den Zählern der ersten $(\lambda-3)/2$ Bernoulli'schen Zahlen als Factoren nicht vorkommen”, J. für Math., 40 (1850), 130–138

[2] Borevich Z. I., Shafarevich I. R., Teoriya chisel, Nauka, M., 1985 | MR | Zbl

[3] Kolyvagin V. A., “Uravneniya Ferma nad krugovymi polyami”, Tr. Matem. in-ta im. V. A. Steklova RAN, 208 (1995), 163–185 | MR | Zbl

[4] Kolyvagin V. A., “O pervom sluchae teoremy Ferma dlya krugovykh polei”, Izv. RAN. Ser. matem., 63:5 (1999), 147–158 | MR | Zbl

[5] Krasner M., “Sur ie premier cas du the theoreme de Fermat”, C. R. Acad. Sci. Paris, 199 (1934), 256–258 | Zbl

[6] Eichler M., “Eine Bemerkung zur Fermat'schen Vermutung”, Acta arithm., 11 (1965), 129–134 | MR

[7] Vandiver H. S., “On Fermat's last theorem”, Trans. Amer. Math. Soc., 31 (1929), 613–642 | DOI | MR | Zbl

[8] Kolyvagin V. A., “Formalnye gruppy i simvol normennogo vycheta”, Izv. AN SSSR. Ser. matem., 43:5 (1979), 1054–1120 | MR | Zbl

[9] Iwasawa K., “Explicit formulas for the norm residue symbol”, J. Math. Soc. Japan, 20:1–2 (1968), 151–165 | MR | Zbl

[10] Leng S., Algebra, Mir, M., 1968

[11] Wada H., “Criteria of Kummer”, Tokyo J. of Math., 3:1 (1980), 173–176 | MR | Zbl

[12] Keller W., Löh G., “The criteria of Kummer and Mirimanoff extended to include 22 consecutive irregular pairs”, Tokyo J. of Math., 6 (1983), 397–402 | MR | Zbl

[13] Beitmen G., Erdeii A., Vysshie transtsendentnye funktsii, T. I, Nauka, M., 1973

[14] Wiles A., “Modular curves and Fermat's Last Theorem”, Annals of Math., 141 (1995), 443–551 | DOI | MR | Zbl