Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_2001_65_3_a10, author = {A. A. Tolstonogov}, title = {Properties of the set of admissible ``state-control'' pairs for first-order evolution control systems}, journal = {Izvestiya. Mathematics }, pages = {617--640}, publisher = {mathdoc}, volume = {65}, number = {3}, year = {2001}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_2001_65_3_a10/} }
TY - JOUR AU - A. A. Tolstonogov TI - Properties of the set of admissible ``state-control'' pairs for first-order evolution control systems JO - Izvestiya. Mathematics PY - 2001 SP - 617 EP - 640 VL - 65 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IM2_2001_65_3_a10/ LA - en ID - IM2_2001_65_3_a10 ER -
A. A. Tolstonogov. Properties of the set of admissible ``state-control'' pairs for first-order evolution control systems. Izvestiya. Mathematics , Tome 65 (2001) no. 3, pp. 617-640. http://geodesic.mathdoc.fr/item/IM2_2001_65_3_a10/
[1] Bressan A., “Differential inclusions with non-closed, non-convex right hand side”, Diff. and Integral Equat., 3 (1990), 633–638 | MR | Zbl
[2] De Blasi F. S., Pianigiani G., “Non-Convex-Valued Differential Inclusions in Banach Spaces”, J. Math. Anal. and Appl., 157:2 (1991), 469–493 | DOI | MR
[3] Suslov S. I., “Nelineinyi “beng-beng” printsip v $\mathbb R^n$”, Matem. zametki, 49:5 (1991), 110–116 | MR | Zbl
[4] Tolstonogov A. A., “Ekstremalnye selektory mnogoznachnykh otobrazhenii i printsip “beng-beng” dlya evolyutsionnykh vklyuchenii”, DAN SSSR, 317:3 (1991), 589–593 | MR | Zbl
[5] De Blasi F. S., Pianigiani G., “On the density of extremal solutions of differential inclusions”, Annal. Polon. Math., 56:2 (1992), 133–142 | MR | Zbl
[6] Bressan A., Piccoli B., “A Baire category approach to the bang-bang property”, J. Diff. Equat., 116:2 (1995), 318–337 | DOI | MR | Zbl
[7] Tolstonogov A. A., “Extreme continuous selectors of multivalued maps and their applications”, J. Diff. Equat., 122:2 (1995), 161–180 | DOI | MR | Zbl
[8] Tolstonogov A. A., “Nepreryvnye selektory mnogoznachnykh otobrazhenii s nevypuklymi, nezamknutymi znacheniyami”, Matem. sb., 187:5 (1996), 121–142 | MR | Zbl
[9] Tolstonogov A. A., Tolstonogov D. A., “$Lp$-continuous extreme selectors of multifunction with decomposable values: Existence Theorems”, Set-valued Anal., 4 (1996), 173–203 | DOI | MR | Zbl
[10] Tolstonogov A. A., Tolstonogov D. A., “$Lp$-continuous selectors of multifunction with decomposable values: Relaxation theorems”, Set-valued Anal., 4 (1996), 237–269 | DOI | MR | Zbl
[11] Tolstonogov A. A., “Relaksatsiya v nevypuklykh zadachakh optimalnogo upravleniya, opisyvaemykh evolyutsionnymi uravneniyami pervogo poryadka”, Matem. sb., 190:11 (1999), 135–160 | MR | Zbl
[12] Tolstonogov A. A., Tolstonogov D. A., “On the “bang-bang” principle for nonlinear evolution inclusions”, Nonlin. Diff. Equat. and Appl., 6:1 (1999), 101–118 | DOI | MR | Zbl
[13] Filippov A. F., “O nekotorykh voprosakh teorii optimalnogo regulirovaniya”, Vestn. MGU. Ser.1. Matem., mekhan., 1959, no. 2, 25–32 | MR | Zbl
[14] Himmelberg C. J., “Measurable relations”, Fundamenta Math., 87 (1975), 53–72 | MR | Zbl
[15] Natanson I. P., Teoriya funktsii veschestvennoi peremennoi, Nauka, M., 1974 | MR
[16] Zeidler E., Nonlinear Functional Analysis and its Application, V. II, Springer, N.-Y., 1990
[17] Barbu V., Nonlinear semigroups and differential equations in Banach spaces, Noordhoff International Publishing, The Netherlands, Leyden, 1976 | MR | Zbl
[18] Tolstonogov A. A., Tolstonogov D. A., “$Lp$-nepreryvnye ekstremalnye selektory mnogoznachnykh otobrazhenii s razlozhimymi znacheniyami”, Dokl. RAN, 355:4 (1997), 455–457 | MR | Zbl
[19] Danford N., Shvarts Dzh., Lineinye operatory. Obschaya teoriya, IL, M., 1962
[20] Tolstonogov A. A., Differentsialnye vklyucheniya v banakhovom prostranstve, Nauka, Novosibirsk, 1986 | MR | Zbl
[21] Fryszkowski A., “Continuous selections for a class of nonsonvex multivalued maps”, Studia Math., 76 (1983), 163–174 | MR | Zbl
[22] Tolstonogov A. A., “K teoreme Skortsa–Dragoni dlya mnogoznachnykh otobrazhenii s peremennoi oblastyu opredeleniya”, Matem. zametki, 48:5 (1990), 110–120 | MR
[23] Hiai F., Umegaki H., “Integrals, conditional expectations and martingales of multivalued functions”, J. Multivariate Anal., 7 (1977), 149–182 | DOI | MR | Zbl
[24] Shvarts L., Analiz, T. 1, Mir, M., 1972
[25] Balder Eric J., “Necessary and sufficient condition for $L_1$-strong-weak lower semicontinuity of integral functionals”, Nonlinear Anal. Theory, Meth., Appl., 11:2 (1987), 1399–1404 | DOI | MR | Zbl
[26] Pappas G., “An approximation result for normal integrands and applications to relaxed controls theory”, J. Math. Anal. and Appl., 93 (1983), 132–141 | DOI | MR | Zbl
[27] Tolstonogov A. A., “O plotnosti i granichnosti mnozhestva reshenii differentsialnogo vklyucheniya v banakhovom prostranstve”, DAN SSSR, 261:2 (1981), 293–296 | MR | Zbl
[28] Goncharov V. V., “Co-density and other properties of the solution set of differential inclusions with noncompact right-hand side”, Discuss. Math. Diff. Inclusions, 16:2 (1996), 103–120 | MR | Zbl
[29] Cellina A., Ornelas A., “Convexity and the closure of the solution set to differential inclusions”, Boll. Un. Mat. Ital., 4 (1990), 255–263 | MR | Zbl
[30] Papageorgiou N. S., “On the “bang-bang” principle for nonlinear evolution inclusions”, Dyn. Syst. and Appl., 2 (1993), 61–74 | MR | Zbl
[31] Shouchuan Hu, Lakshmikantham V., Papageorgiou N. S., “On the solution set of nonlinear evolution inclusions”, Dyn. Syst. and Appl., 1 (1992), 71–82 | MR | Zbl