Properties of the set of admissible ``state-control'' pairs for first-order evolution control systems
Izvestiya. Mathematics , Tome 65 (2001) no. 3, pp. 617-640.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a control system described by a non-linear first-order evolution equation on an evolution triple of Banach spaces (a “Gelfand triple”) with a mixed multivalued control constraint whose values are non-convex closed sets in the control space. Besides the original system, we consider systems with the following control constraints: the constraint whose values are the closed convex hulls of the values of the original constraint, and the constraint whose values are the extreme points of the convexified constraint that belong to the original one. We study topological properties of the sets of admissible “state-control” pairs for the same system with various constraints and consider the relations between them. An example of a non-linear parabolic control system is worked out in detail.
@article{IM2_2001_65_3_a10,
     author = {A. A. Tolstonogov},
     title = {Properties of the set of admissible ``state-control'' pairs for first-order evolution control systems},
     journal = {Izvestiya. Mathematics },
     pages = {617--640},
     publisher = {mathdoc},
     volume = {65},
     number = {3},
     year = {2001},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2001_65_3_a10/}
}
TY  - JOUR
AU  - A. A. Tolstonogov
TI  - Properties of the set of admissible ``state-control'' pairs for first-order evolution control systems
JO  - Izvestiya. Mathematics 
PY  - 2001
SP  - 617
EP  - 640
VL  - 65
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2001_65_3_a10/
LA  - en
ID  - IM2_2001_65_3_a10
ER  - 
%0 Journal Article
%A A. A. Tolstonogov
%T Properties of the set of admissible ``state-control'' pairs for first-order evolution control systems
%J Izvestiya. Mathematics 
%D 2001
%P 617-640
%V 65
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2001_65_3_a10/
%G en
%F IM2_2001_65_3_a10
A. A. Tolstonogov. Properties of the set of admissible ``state-control'' pairs for first-order evolution control systems. Izvestiya. Mathematics , Tome 65 (2001) no. 3, pp. 617-640. http://geodesic.mathdoc.fr/item/IM2_2001_65_3_a10/

[1] Bressan A., “Differential inclusions with non-closed, non-convex right hand side”, Diff. and Integral Equat., 3 (1990), 633–638 | MR | Zbl

[2] De Blasi F. S., Pianigiani G., “Non-Convex-Valued Differential Inclusions in Banach Spaces”, J. Math. Anal. and Appl., 157:2 (1991), 469–493 | DOI | MR

[3] Suslov S. I., “Nelineinyi “beng-beng” printsip v $\mathbb R^n$”, Matem. zametki, 49:5 (1991), 110–116 | MR | Zbl

[4] Tolstonogov A. A., “Ekstremalnye selektory mnogoznachnykh otobrazhenii i printsip “beng-beng” dlya evolyutsionnykh vklyuchenii”, DAN SSSR, 317:3 (1991), 589–593 | MR | Zbl

[5] De Blasi F. S., Pianigiani G., “On the density of extremal solutions of differential inclusions”, Annal. Polon. Math., 56:2 (1992), 133–142 | MR | Zbl

[6] Bressan A., Piccoli B., “A Baire category approach to the bang-bang property”, J. Diff. Equat., 116:2 (1995), 318–337 | DOI | MR | Zbl

[7] Tolstonogov A. A., “Extreme continuous selectors of multivalued maps and their applications”, J. Diff. Equat., 122:2 (1995), 161–180 | DOI | MR | Zbl

[8] Tolstonogov A. A., “Nepreryvnye selektory mnogoznachnykh otobrazhenii s nevypuklymi, nezamknutymi znacheniyami”, Matem. sb., 187:5 (1996), 121–142 | MR | Zbl

[9] Tolstonogov A. A., Tolstonogov D. A., “$Lp$-continuous extreme selectors of multifunction with decomposable values: Existence Theorems”, Set-valued Anal., 4 (1996), 173–203 | DOI | MR | Zbl

[10] Tolstonogov A. A., Tolstonogov D. A., “$Lp$-continuous selectors of multifunction with decomposable values: Relaxation theorems”, Set-valued Anal., 4 (1996), 237–269 | DOI | MR | Zbl

[11] Tolstonogov A. A., “Relaksatsiya v nevypuklykh zadachakh optimalnogo upravleniya, opisyvaemykh evolyutsionnymi uravneniyami pervogo poryadka”, Matem. sb., 190:11 (1999), 135–160 | MR | Zbl

[12] Tolstonogov A. A., Tolstonogov D. A., “On the “bang-bang” principle for nonlinear evolution inclusions”, Nonlin. Diff. Equat. and Appl., 6:1 (1999), 101–118 | DOI | MR | Zbl

[13] Filippov A. F., “O nekotorykh voprosakh teorii optimalnogo regulirovaniya”, Vestn. MGU. Ser.1. Matem., mekhan., 1959, no. 2, 25–32 | MR | Zbl

[14] Himmelberg C. J., “Measurable relations”, Fundamenta Math., 87 (1975), 53–72 | MR | Zbl

[15] Natanson I. P., Teoriya funktsii veschestvennoi peremennoi, Nauka, M., 1974 | MR

[16] Zeidler E., Nonlinear Functional Analysis and its Application, V. II, Springer, N.-Y., 1990

[17] Barbu V., Nonlinear semigroups and differential equations in Banach spaces, Noordhoff International Publishing, The Netherlands, Leyden, 1976 | MR | Zbl

[18] Tolstonogov A. A., Tolstonogov D. A., “$Lp$-nepreryvnye ekstremalnye selektory mnogoznachnykh otobrazhenii s razlozhimymi znacheniyami”, Dokl. RAN, 355:4 (1997), 455–457 | MR | Zbl

[19] Danford N., Shvarts Dzh., Lineinye operatory. Obschaya teoriya, IL, M., 1962

[20] Tolstonogov A. A., Differentsialnye vklyucheniya v banakhovom prostranstve, Nauka, Novosibirsk, 1986 | MR | Zbl

[21] Fryszkowski A., “Continuous selections for a class of nonsonvex multivalued maps”, Studia Math., 76 (1983), 163–174 | MR | Zbl

[22] Tolstonogov A. A., “K teoreme Skortsa–Dragoni dlya mnogoznachnykh otobrazhenii s peremennoi oblastyu opredeleniya”, Matem. zametki, 48:5 (1990), 110–120 | MR

[23] Hiai F., Umegaki H., “Integrals, conditional expectations and martingales of multivalued functions”, J. Multivariate Anal., 7 (1977), 149–182 | DOI | MR | Zbl

[24] Shvarts L., Analiz, T. 1, Mir, M., 1972

[25] Balder Eric J., “Necessary and sufficient condition for $L_1$-strong-weak lower semicontinuity of integral functionals”, Nonlinear Anal. Theory, Meth., Appl., 11:2 (1987), 1399–1404 | DOI | MR | Zbl

[26] Pappas G., “An approximation result for normal integrands and applications to relaxed controls theory”, J. Math. Anal. and Appl., 93 (1983), 132–141 | DOI | MR | Zbl

[27] Tolstonogov A. A., “O plotnosti i granichnosti mnozhestva reshenii differentsialnogo vklyucheniya v banakhovom prostranstve”, DAN SSSR, 261:2 (1981), 293–296 | MR | Zbl

[28] Goncharov V. V., “Co-density and other properties of the solution set of differential inclusions with noncompact right-hand side”, Discuss. Math. Diff. Inclusions, 16:2 (1996), 103–120 | MR | Zbl

[29] Cellina A., Ornelas A., “Convexity and the closure of the solution set to differential inclusions”, Boll. Un. Mat. Ital., 4 (1990), 255–263 | MR | Zbl

[30] Papageorgiou N. S., “On the “bang-bang” principle for nonlinear evolution inclusions”, Dyn. Syst. and Appl., 2 (1993), 61–74 | MR | Zbl

[31] Shouchuan Hu, Lakshmikantham V., Papageorgiou N. S., “On the solution set of nonlinear evolution inclusions”, Dyn. Syst. and Appl., 1 (1992), 71–82 | MR | Zbl