Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_2001_65_3_a1, author = {A. L. Gorodentsev and A. N. Tyurin}, title = {Abelian {Lagrangian} algebraic geometry}, journal = {Izvestiya. Mathematics }, pages = {437--467}, publisher = {mathdoc}, volume = {65}, number = {3}, year = {2001}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_2001_65_3_a1/} }
A. L. Gorodentsev; A. N. Tyurin. Abelian Lagrangian algebraic geometry. Izvestiya. Mathematics , Tome 65 (2001) no. 3, pp. 437-467. http://geodesic.mathdoc.fr/item/IM2_2001_65_3_a1/
[1] Arnold V. I., Matematicheskie metody klassicheskoi mekhaniki, Nauka, M., 1989 | MR
[2] Ganning R., Rossi Kh., Analiticheskie funktsii mnogikh kompleksnykh peremennykh, Mir, M., 1969 | MR
[3] Griffits F., Kharris Dzh., Printsipy algebraicheskoi geometrii, T. 1, Mir, M., 1982 | MR
[4] Dubrovin B. A., Krichever I. M., Novikov S. P., “Integriruemye sistemy, I”, Itogi nauki i tekhn. Ser. Sovrem. probl. mat. Fundam. napravleniya, 4, VINITI, M., 1985, 179–277
[5] Kirillov A. A., “Geometricheskoe kvantovanie”, Itogi nauki i tekhniki. Sovremennye problemy matematiki. Fundamentalnye napravleniya, 4, VINITI, M., 1985, 141–178
[6] Atiyah M. F., “The Moment Map In Symplectic Geometry”, Durham Symp. on Global Riemannian Geometry, Ellis Horwood Ltd., 1984, 43–51 | MR
[7] Atiyah M. F., Bott R., “The Yang–Mills Equations Over Riemann Surfaces”, Phil. Trans. R. Soc. Lond., 108 (1988), 523–615 | MR
[8] Atiyah M. F., Bott R., “The Moment Map And Equivariant Cohomology”, Topology, 23:1 (1984), 1–28 | DOI | MR | Zbl
[9] Abraham R., Marsden J., Fondation of mechanics, 2nd ed., Benjamin, Reading, Mass., 1978 | MR | Zbl
[10] Bayen F., Flato M., Frosdal C., Lichnerovicz A., Sternheimer D., “Deformation theory and quantization. I–III”, Lett. Math. Phys., 1 (1977), 521–530 ; Ann. Phys., 111 (1978), 61–151 | DOI | MR | DOI | MR
[11] Boutet de Monvel L., Guillemin V., “The spectral theory of Toeplitz operators”, Ann. Math. Studies, 99 (1981) | Zbl
[12] Bordemann M., Meinreken E., Schlichenmair M., “Toeplitz quantization of Kähler manifolds and $\frak{gl}(n),n\to\infty$ limits”, Commun. Math. Phys., 165 (1994), 281–296 | DOI | MR | Zbl
[13] Borthwick D., Paul T., Uribe A., “Legendrian distributions with applications to relative Poincare series”, Invent. math., 122 (1995), 359–402 | DOI | MR | Zbl
[14] Brylinski J.-L., Loop Spaces, Characteristic Classes, And Geometric Quantization, Progress in Math., 107, Birkhäuser, 1992 | MR
[15] Cattaneo A., Felder G., A path integral approach to the Kontsevich quantization formula, E-print math.QA/9902090
[16] Deligne P., “Deformation de l'algebre des fonctions d'une variete symplectic: Comparison entre Fedosov et de Wilde-Lecomte”, Sel. Math. New Ser., 1 (1995), 667–697 | DOI | MR | Zbl
[17] De Gosson M., Maslov Classes, Metaplectic Representation, And Lagrangian Quantization, Math. Res., 95, Academic Verlag, 1997 | MR
[18] Gullemin V., Sternberg S., Geometric Asymptotics, John Wiley Sons Inc., N.Y., 1978
[19] Hitchin N. J., “Flat Connections And Geometric Quantization”, Commun. Math. Phys., 131 (1990), 347–380 | DOI | MR | Zbl
[20] Hitchin N. J., Lectures On Special Lagrangian Submanifolds, E-print math.DG/9907034 | MR
[21] MacKey G. W., Mathematical Foundations Of Quantum Mechanics, Benjamin, Reading, Mass., 1963 | MR | Zbl
[22] Rawnslay J. H., “Coherent States And Kähler Manifolds”, Qart. J. of Maths., 28 (1997), 404–415
[23] Tyurin A. N., On Bohr–Sommerfeld bases, Univ. of Warwick preprint: Sept. 1999, Publication 216 | MR
[24] Tyurin A. N., Geometric quantization and mirror symmetry, E-print math.AG/9902027
[25] Weinstein A., “Symplectic geometry”, BAMS, 5:1 (1981) | MR | Zbl
[26] Weinstein A., “Connections of Berry and Hannay Type for Moving Lagrangian Submanifolds”, Advances in Math., 82 (1990), 133–159 | DOI | MR | Zbl
[27] Weinstein A., “Lagrangian Submanifolds And Hamiltonian Systems”, Ann. of Math., 98 (1973), 377–410 | DOI | MR | Zbl
[28] Weinstein A., “Symplectic Manifolds And Their Lagrangian Submanifolds”, Adv. in Math., 6 (1971), 329–346 | DOI | MR | Zbl