Abelian Lagrangian algebraic geometry
Izvestiya. Mathematics , Tome 65 (2001) no. 3, pp. 437-467.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper begins a detailed exposition of a geometric approach to quantization, which is presented in a series of preprints ([23], [24], …) and which combines the methods of algebraic and Lagrangian geometry. Given a prequantization $U (1)$-bundle $L$ on a symplectic manifold $M$, we introduce an infinite-dimensional Kähler manifold $\mathscr P^{\mathrm{hw}}$ of half-weighted Planck cycles. With every Kähler polarization on $M$ we canonically associate a map $\mathscr P^{\mathrm{hw}}\overset{\gamma}{\to}H^{0}(M,L)$ to the space of holomorphic sections of the prequantization bundle. We show that this map has a constant Kähler angle and its “twisting” to a holomorphic map is the Borthwick–Paul–Uribe map. The simplest non-trivial illustration of all these constructions is provided by the theory of Legendrian knots in $S^3$.
@article{IM2_2001_65_3_a1,
     author = {A. L. Gorodentsev and A. N. Tyurin},
     title = {Abelian {Lagrangian} algebraic geometry},
     journal = {Izvestiya. Mathematics },
     pages = {437--467},
     publisher = {mathdoc},
     volume = {65},
     number = {3},
     year = {2001},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2001_65_3_a1/}
}
TY  - JOUR
AU  - A. L. Gorodentsev
AU  - A. N. Tyurin
TI  - Abelian Lagrangian algebraic geometry
JO  - Izvestiya. Mathematics 
PY  - 2001
SP  - 437
EP  - 467
VL  - 65
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2001_65_3_a1/
LA  - en
ID  - IM2_2001_65_3_a1
ER  - 
%0 Journal Article
%A A. L. Gorodentsev
%A A. N. Tyurin
%T Abelian Lagrangian algebraic geometry
%J Izvestiya. Mathematics 
%D 2001
%P 437-467
%V 65
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2001_65_3_a1/
%G en
%F IM2_2001_65_3_a1
A. L. Gorodentsev; A. N. Tyurin. Abelian Lagrangian algebraic geometry. Izvestiya. Mathematics , Tome 65 (2001) no. 3, pp. 437-467. http://geodesic.mathdoc.fr/item/IM2_2001_65_3_a1/

[1] Arnold V. I., Matematicheskie metody klassicheskoi mekhaniki, Nauka, M., 1989 | MR

[2] Ganning R., Rossi Kh., Analiticheskie funktsii mnogikh kompleksnykh peremennykh, Mir, M., 1969 | MR

[3] Griffits F., Kharris Dzh., Printsipy algebraicheskoi geometrii, T. 1, Mir, M., 1982 | MR

[4] Dubrovin B. A., Krichever I. M., Novikov S. P., “Integriruemye sistemy, I”, Itogi nauki i tekhn. Ser. Sovrem. probl. mat. Fundam. napravleniya, 4, VINITI, M., 1985, 179–277

[5] Kirillov A. A., “Geometricheskoe kvantovanie”, Itogi nauki i tekhniki. Sovremennye problemy matematiki. Fundamentalnye napravleniya, 4, VINITI, M., 1985, 141–178

[6] Atiyah M. F., “The Moment Map In Symplectic Geometry”, Durham Symp. on Global Riemannian Geometry, Ellis Horwood Ltd., 1984, 43–51 | MR

[7] Atiyah M. F., Bott R., “The Yang–Mills Equations Over Riemann Surfaces”, Phil. Trans. R. Soc. Lond., 108 (1988), 523–615 | MR

[8] Atiyah M. F., Bott R., “The Moment Map And Equivariant Cohomology”, Topology, 23:1 (1984), 1–28 | DOI | MR | Zbl

[9] Abraham R., Marsden J., Fondation of mechanics, 2nd ed., Benjamin, Reading, Mass., 1978 | MR | Zbl

[10] Bayen F., Flato M., Frosdal C., Lichnerovicz A., Sternheimer D., “Deformation theory and quantization. I–III”, Lett. Math. Phys., 1 (1977), 521–530 ; Ann. Phys., 111 (1978), 61–151 | DOI | MR | DOI | MR

[11] Boutet de Monvel L., Guillemin V., “The spectral theory of Toeplitz operators”, Ann. Math. Studies, 99 (1981) | Zbl

[12] Bordemann M., Meinreken E., Schlichenmair M., “Toeplitz quantization of Kähler manifolds and $\frak{gl}(n),n\to\infty$ limits”, Commun. Math. Phys., 165 (1994), 281–296 | DOI | MR | Zbl

[13] Borthwick D., Paul T., Uribe A., “Legendrian distributions with applications to relative Poincare series”, Invent. math., 122 (1995), 359–402 | DOI | MR | Zbl

[14] Brylinski J.-L., Loop Spaces, Characteristic Classes, And Geometric Quantization, Progress in Math., 107, Birkhäuser, 1992 | MR

[15] Cattaneo A., Felder G., A path integral approach to the Kontsevich quantization formula, E-print math.QA/9902090

[16] Deligne P., “Deformation de l'algebre des fonctions d'une variete symplectic: Comparison entre Fedosov et de Wilde-Lecomte”, Sel. Math. New Ser., 1 (1995), 667–697 | DOI | MR | Zbl

[17] De Gosson M., Maslov Classes, Metaplectic Representation, And Lagrangian Quantization, Math. Res., 95, Academic Verlag, 1997 | MR

[18] Gullemin V., Sternberg S., Geometric Asymptotics, John Wiley Sons Inc., N.Y., 1978

[19] Hitchin N. J., “Flat Connections And Geometric Quantization”, Commun. Math. Phys., 131 (1990), 347–380 | DOI | MR | Zbl

[20] Hitchin N. J., Lectures On Special Lagrangian Submanifolds, E-print math.DG/9907034 | MR

[21] MacKey G. W., Mathematical Foundations Of Quantum Mechanics, Benjamin, Reading, Mass., 1963 | MR | Zbl

[22] Rawnslay J. H., “Coherent States And Kähler Manifolds”, Qart. J. of Maths., 28 (1997), 404–415

[23] Tyurin A. N., On Bohr–Sommerfeld bases, Univ. of Warwick preprint: Sept. 1999, Publication 216 | MR

[24] Tyurin A. N., Geometric quantization and mirror symmetry, E-print math.AG/9902027

[25] Weinstein A., “Symplectic geometry”, BAMS, 5:1 (1981) | MR | Zbl

[26] Weinstein A., “Connections of Berry and Hannay Type for Moving Lagrangian Submanifolds”, Advances in Math., 82 (1990), 133–159 | DOI | MR | Zbl

[27] Weinstein A., “Lagrangian Submanifolds And Hamiltonian Systems”, Ann. of Math., 98 (1973), 377–410 | DOI | MR | Zbl

[28] Weinstein A., “Symplectic Manifolds And Their Lagrangian Submanifolds”, Adv. in Math., 6 (1971), 329–346 | DOI | MR | Zbl