Abelian Lagrangian algebraic geometry
Izvestiya. Mathematics , Tome 65 (2001) no. 3, pp. 437-467

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper begins a detailed exposition of a geometric approach to quantization, which is presented in a series of preprints ([23], [24], …) and which combines the methods of algebraic and Lagrangian geometry. Given a prequantization $U (1)$-bundle $L$ on a symplectic manifold $M$, we introduce an infinite-dimensional Kähler manifold $\mathscr P^{\mathrm{hw}}$ of half-weighted Planck cycles. With every Kähler polarization on $M$ we canonically associate a map $\mathscr P^{\mathrm{hw}}\overset{\gamma}{\to}H^{0}(M,L)$ to the space of holomorphic sections of the prequantization bundle. We show that this map has a constant Kähler angle and its “twisting” to a holomorphic map is the Borthwick–Paul–Uribe map. The simplest non-trivial illustration of all these constructions is provided by the theory of Legendrian knots in $S^3$.
@article{IM2_2001_65_3_a1,
     author = {A. L. Gorodentsev and A. N. Tyurin},
     title = {Abelian {Lagrangian} algebraic geometry},
     journal = {Izvestiya. Mathematics },
     pages = {437--467},
     publisher = {mathdoc},
     volume = {65},
     number = {3},
     year = {2001},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2001_65_3_a1/}
}
TY  - JOUR
AU  - A. L. Gorodentsev
AU  - A. N. Tyurin
TI  - Abelian Lagrangian algebraic geometry
JO  - Izvestiya. Mathematics 
PY  - 2001
SP  - 437
EP  - 467
VL  - 65
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2001_65_3_a1/
LA  - en
ID  - IM2_2001_65_3_a1
ER  - 
%0 Journal Article
%A A. L. Gorodentsev
%A A. N. Tyurin
%T Abelian Lagrangian algebraic geometry
%J Izvestiya. Mathematics 
%D 2001
%P 437-467
%V 65
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2001_65_3_a1/
%G en
%F IM2_2001_65_3_a1
A. L. Gorodentsev; A. N. Tyurin. Abelian Lagrangian algebraic geometry. Izvestiya. Mathematics , Tome 65 (2001) no. 3, pp. 437-467. http://geodesic.mathdoc.fr/item/IM2_2001_65_3_a1/