On an analogue of Hardy's inequality for the Walsh--Fourier
Izvestiya. Mathematics , Tome 65 (2001) no. 3, pp. 425-435.

Voir la notice de l'article provenant de la source Math-Net.Ru

According to Hardy's well-known inequality, the $l_1$-norm of a function in the Hardy space $H(T)$ consisting of $2\pi$-periodic functions serves as an upper estimate for the $l_1$-norm of the sequence of Fourier coefficients of the integral of the function. In this paper, the dyadic Hardy space $H(\mathbb R_+)$ is introduced and an analogue of this estimate is proved for the Walsh–Fourier transform.
@article{IM2_2001_65_3_a0,
     author = {B. I. Golubov},
     title = {On an analogue of {Hardy's} inequality for the {Walsh--Fourier}},
     journal = {Izvestiya. Mathematics },
     pages = {425--435},
     publisher = {mathdoc},
     volume = {65},
     number = {3},
     year = {2001},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2001_65_3_a0/}
}
TY  - JOUR
AU  - B. I. Golubov
TI  - On an analogue of Hardy's inequality for the Walsh--Fourier
JO  - Izvestiya. Mathematics 
PY  - 2001
SP  - 425
EP  - 435
VL  - 65
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2001_65_3_a0/
LA  - en
ID  - IM2_2001_65_3_a0
ER  - 
%0 Journal Article
%A B. I. Golubov
%T On an analogue of Hardy's inequality for the Walsh--Fourier
%J Izvestiya. Mathematics 
%D 2001
%P 425-435
%V 65
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2001_65_3_a0/
%G en
%F IM2_2001_65_3_a0
B. I. Golubov. On an analogue of Hardy's inequality for the Walsh--Fourier. Izvestiya. Mathematics , Tome 65 (2001) no. 3, pp. 425-435. http://geodesic.mathdoc.fr/item/IM2_2001_65_3_a0/

[1] Hardy G. H., Littlewood J. E., “Some new properties of Fourier constants”, Math. Annalen, 97 (1926), 159–209 | DOI | MR | Zbl

[2] Zigmund A., Trigonometricheskie ryady, 1, Mir, M., 1965 | MR

[3] Hille E., Tamarkin J. D., “On the absolute integrability of Fourier transforms”, Fundamenta Math., 25 (1935), 329–352 | Zbl

[4] Ladhawala N. R., “Absolute summability of Walsh–Fourier series”, Pacific J. Math., 65 (1976), 103–108 | MR | Zbl

[5] Schipp F., Wade W. R., Simon P., Walsh series, Akadémiai Kiadó, Budapest, 1990 | MR

[6] Fine N. J., “The generalized Walsh functions”, Trans. Amer. Math. Soc., 69 (1950), 66–77 | DOI | MR | Zbl

[7] Golubov B. I., Efimov A. V., Skvortsov V. A., Ryady i preobrazovaniya Uolsha. Teoriya i primeneniya, Nauka, M., 1987 | MR | Zbl

[8] Ulyanov P. L., “O ryadakh po sisteme Khaara”, Matem. sb., 63:3 (1964), 356–391 | MR | Zbl

[9] Natanson I. P., Teoriya funktsii veschestvennoi peremennoi, Nauka, M., 1974 | MR