Function systems obtained using translates and dilates of a~single function in the paces~$E_\varphi$ with $\lim_{t\to\infty}\frac{\varphi(t)}t=0$
Izvestiya. Mathematics , Tome 65 (2001) no. 2, pp. 389-402

Voir la notice de l'article provenant de la source Math-Net.Ru

We solve Ul'yanov's problem [1] of representing elements of class $\varphi(L)$ as series with respect to arbitrary function systems.
@article{IM2_2001_65_2_a5,
     author = {V. I. Filippov},
     title = {Function systems obtained using translates and dilates of a~single function in the paces~$E_\varphi$ with $\lim_{t\to\infty}\frac{\varphi(t)}t=0$},
     journal = {Izvestiya. Mathematics },
     pages = {389--402},
     publisher = {mathdoc},
     volume = {65},
     number = {2},
     year = {2001},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2001_65_2_a5/}
}
TY  - JOUR
AU  - V. I. Filippov
TI  - Function systems obtained using translates and dilates of a~single function in the paces~$E_\varphi$ with $\lim_{t\to\infty}\frac{\varphi(t)}t=0$
JO  - Izvestiya. Mathematics 
PY  - 2001
SP  - 389
EP  - 402
VL  - 65
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2001_65_2_a5/
LA  - en
ID  - IM2_2001_65_2_a5
ER  - 
%0 Journal Article
%A V. I. Filippov
%T Function systems obtained using translates and dilates of a~single function in the paces~$E_\varphi$ with $\lim_{t\to\infty}\frac{\varphi(t)}t=0$
%J Izvestiya. Mathematics 
%D 2001
%P 389-402
%V 65
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2001_65_2_a5/
%G en
%F IM2_2001_65_2_a5
V. I. Filippov. Function systems obtained using translates and dilates of a~single function in the paces~$E_\varphi$ with $\lim_{t\to\infty}\frac{\varphi(t)}t=0$. Izvestiya. Mathematics , Tome 65 (2001) no. 2, pp. 389-402. http://geodesic.mathdoc.fr/item/IM2_2001_65_2_a5/