Function systems obtained using translates and dilates of a~single function in the paces~$E_\varphi$ with $\lim_{t\to\infty}\frac{\varphi(t)}t=0$
Izvestiya. Mathematics , Tome 65 (2001) no. 2, pp. 389-402
Voir la notice de l'article provenant de la source Math-Net.Ru
We solve Ul'yanov's problem [1] of representing elements of class $\varphi(L)$ as series with respect to arbitrary function systems.
@article{IM2_2001_65_2_a5,
author = {V. I. Filippov},
title = {Function systems obtained using translates and dilates of a~single function in the paces~$E_\varphi$ with $\lim_{t\to\infty}\frac{\varphi(t)}t=0$},
journal = {Izvestiya. Mathematics },
pages = {389--402},
publisher = {mathdoc},
volume = {65},
number = {2},
year = {2001},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_2001_65_2_a5/}
}
TY - JOUR
AU - V. I. Filippov
TI - Function systems obtained using translates and dilates of a~single function in the paces~$E_\varphi$ with $\lim_{t\to\infty}\frac{\varphi(t)}t=0$
JO - Izvestiya. Mathematics
PY - 2001
SP - 389
EP - 402
VL - 65
IS - 2
PB - mathdoc
UR - http://geodesic.mathdoc.fr/item/IM2_2001_65_2_a5/
LA - en
ID - IM2_2001_65_2_a5
ER -
%0 Journal Article
%A V. I. Filippov
%T Function systems obtained using translates and dilates of a~single function in the paces~$E_\varphi$ with $\lim_{t\to\infty}\frac{\varphi(t)}t=0$
%J Izvestiya. Mathematics
%D 2001
%P 389-402
%V 65
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2001_65_2_a5/
%G en
%F IM2_2001_65_2_a5
V. I. Filippov. Function systems obtained using translates and dilates of a~single function in the paces~$E_\varphi$ with $\lim_{t\to\infty}\frac{\varphi(t)}t=0$. Izvestiya. Mathematics , Tome 65 (2001) no. 2, pp. 389-402. http://geodesic.mathdoc.fr/item/IM2_2001_65_2_a5/