Function systems obtained using translates and dilates of a~single function in the paces~$E_\varphi$ with $\lim_{t\to\infty}\frac{\varphi(t)}t=0$
Izvestiya. Mathematics , Tome 65 (2001) no. 2, pp. 389-402.

Voir la notice de l'article provenant de la source Math-Net.Ru

We solve Ul'yanov's problem [1] of representing elements of class $\varphi(L)$ as series with respect to arbitrary function systems.
@article{IM2_2001_65_2_a5,
     author = {V. I. Filippov},
     title = {Function systems obtained using translates and dilates of a~single function in the paces~$E_\varphi$ with $\lim_{t\to\infty}\frac{\varphi(t)}t=0$},
     journal = {Izvestiya. Mathematics },
     pages = {389--402},
     publisher = {mathdoc},
     volume = {65},
     number = {2},
     year = {2001},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2001_65_2_a5/}
}
TY  - JOUR
AU  - V. I. Filippov
TI  - Function systems obtained using translates and dilates of a~single function in the paces~$E_\varphi$ with $\lim_{t\to\infty}\frac{\varphi(t)}t=0$
JO  - Izvestiya. Mathematics 
PY  - 2001
SP  - 389
EP  - 402
VL  - 65
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2001_65_2_a5/
LA  - en
ID  - IM2_2001_65_2_a5
ER  - 
%0 Journal Article
%A V. I. Filippov
%T Function systems obtained using translates and dilates of a~single function in the paces~$E_\varphi$ with $\lim_{t\to\infty}\frac{\varphi(t)}t=0$
%J Izvestiya. Mathematics 
%D 2001
%P 389-402
%V 65
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2001_65_2_a5/
%G en
%F IM2_2001_65_2_a5
V. I. Filippov. Function systems obtained using translates and dilates of a~single function in the paces~$E_\varphi$ with $\lim_{t\to\infty}\frac{\varphi(t)}t=0$. Izvestiya. Mathematics , Tome 65 (2001) no. 2, pp. 389-402. http://geodesic.mathdoc.fr/item/IM2_2001_65_2_a5/

[1] Ulyanov P. L., “Predstavlenie funktsii ryadami i klassy $\Phi (L)$”, UMN, 27:2 (1972), 3–52 | MR | Zbl

[2] Filippov V. I., Oswald P., “Representation in $L^p$ by series of translates and dilates of one function”, J. appr. theory, 82:1 (1995), 15–29 | DOI | MR | Zbl

[3] Filippov V. I., “O podsistemakh sistemy Khaara v prostranstvakh $E_\varphi $ s $\varliminf _{t\to \infty }\bigl (\varphi (t)/t\bigr )=0$”, Matem. zametki, 51:6 (1992), 97–106 | MR | Zbl

[4] Filippov V. I., “On the completeness and other properties of some function systems in $L_p$, $0

\infty $”, J. of appr. theory, 94 (1998), 42–53 | DOI | MR | Zbl

[5] Filippov V. I., Linear continuous functionals and representation of functions by series in the spaces $E_\varphi $, Preprint No 00-11, January 2000, Institute of Biomathematics and Biometrics, GSF-National Research Center for Enviroment and Health, Neuherberg/Munich Germany | Zbl

[6] Iosida K., Funktsionalnyi analiz, Mir, M., 1967 | MR

[7] Musielak J., “Orlicz Spaces and Modular Spaces”, Lecture Notes in Math., 1034, Springer, N. Y., 1983 | MR | Zbl

[8] Ivanov V. I., “Predstavlenie funktsii ryadami v metricheskikh simmetrichnykh prostranstvakh bez lineinykh funktsionalov”, Tr. MIAN SSSR, 189, Nauka, M., 1989, 34–77 | Zbl

[9] Khardi G. G., Littlvud D. E., Polia G., Neravenstva, IL, M., 1948

[10] Talalyan A. A., “Ob approksimatsionnykh svoistvakh nekotorykh nepolnykh sistem”, Matem. sb., 115 (157):4 (1981), 499–541 | MR