On the Brauer group of an arithmetic scheme
Izvestiya. Mathematics , Tome 65 (2001) no. 2, pp. 357-388

Voir la notice de l'article provenant de la source Math-Net.Ru

For an Enriques surface $V$ over a number field $k$ with a $k$-rational point we prove that the $l$-component of $\operatorname{Br}(V)/{\operatorname{Br}(k)}$ is finite if and only if $l\ne 2$. For a regular projective smooth variety satisfying the Tate conjecture for divisors over a number field, we find a simple criterion for the finiteness of the $l$-component of $\operatorname{Br}'(V)/{\operatorname{Br}(k)}$. Moreover, for an arithmetic model $X$ of $V$ we prove a variant of Artin's conjecture on the finiteness of the Brauer group of $X$. Applications to the finiteness of the $l$-components of Shafarevich–Tate groups are given.
@article{IM2_2001_65_2_a4,
     author = {S. G. Tankeev},
     title = {On the {Brauer} group of an arithmetic scheme},
     journal = {Izvestiya. Mathematics },
     pages = {357--388},
     publisher = {mathdoc},
     volume = {65},
     number = {2},
     year = {2001},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2001_65_2_a4/}
}
TY  - JOUR
AU  - S. G. Tankeev
TI  - On the Brauer group of an arithmetic scheme
JO  - Izvestiya. Mathematics 
PY  - 2001
SP  - 357
EP  - 388
VL  - 65
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2001_65_2_a4/
LA  - en
ID  - IM2_2001_65_2_a4
ER  - 
%0 Journal Article
%A S. G. Tankeev
%T On the Brauer group of an arithmetic scheme
%J Izvestiya. Mathematics 
%D 2001
%P 357-388
%V 65
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2001_65_2_a4/
%G en
%F IM2_2001_65_2_a4
S. G. Tankeev. On the Brauer group of an arithmetic scheme. Izvestiya. Mathematics , Tome 65 (2001) no. 2, pp. 357-388. http://geodesic.mathdoc.fr/item/IM2_2001_65_2_a4/