Spaces of Hermitian triples and the Seiberg--Witten equations
Izvestiya. Mathematics , Tome 65 (2001) no. 1, pp. 181-205.

Voir la notice de l'article provenant de la source Math-Net.Ru

In [12] we described a canonical map $\tau$ of the space of all Hermitian triples to the real cohomology space. In this paper we use this map to introduce new equations, which are gauge-invariant with respect to the action of $\operatorname{Diff}^+X$. We also describe a connection between these equations and the Seiberg–Witten equations and invariants for 4-manifolds.
@article{IM2_2001_65_1_a8,
     author = {N. A. Tyurin},
     title = {Spaces of {Hermitian} triples and the {Seiberg--Witten} equations},
     journal = {Izvestiya. Mathematics },
     pages = {181--205},
     publisher = {mathdoc},
     volume = {65},
     number = {1},
     year = {2001},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2001_65_1_a8/}
}
TY  - JOUR
AU  - N. A. Tyurin
TI  - Spaces of Hermitian triples and the Seiberg--Witten equations
JO  - Izvestiya. Mathematics 
PY  - 2001
SP  - 181
EP  - 205
VL  - 65
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2001_65_1_a8/
LA  - en
ID  - IM2_2001_65_1_a8
ER  - 
%0 Journal Article
%A N. A. Tyurin
%T Spaces of Hermitian triples and the Seiberg--Witten equations
%J Izvestiya. Mathematics 
%D 2001
%P 181-205
%V 65
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2001_65_1_a8/
%G en
%F IM2_2001_65_1_a8
N. A. Tyurin. Spaces of Hermitian triples and the Seiberg--Witten equations. Izvestiya. Mathematics , Tome 65 (2001) no. 1, pp. 181-205. http://geodesic.mathdoc.fr/item/IM2_2001_65_1_a8/

[1] Demailly J. P., “$L^2$-vanishing theorems for positive line bundles and adjunction theory”, Lect. Notes in Math., 1464, Springer, 1994, 1–97 | MR

[2] Donaldson S., “The Seiberg–Witten equation and 4-dimensional topology”, Bull. of the AMS, 33:1 (1996), 45–70 | DOI | MR | Zbl

[3] Eastwood M., Penrose R., Wells R., “Cohomology and massless fields”, Comm. in Math. Physics, 78 (1981), 305–351 | DOI | MR | Zbl

[4] Griffiths P., Harris J., Principles of algebraic geometry, Springer, N.Y., 1978 | MR

[5] Del Rio H., Seiberg–Witten invariants of non-simple type and Einstein metrics, DG/ 0002243, p. 1–19

[6] Kronheimer P., Mrowka T., “The genus of embedded surfaces in the projective plane”, Math. Res. Lett., 1 (1994), 797–808 | MR | Zbl

[7] Kotshchik D., Morgan J., Taubes C., “4-manifolds without symplectic form but with nontrivial Seiberg–Witten invariant”, Math. Res. Lett., 2 (1995), 119–124 | MR

[8] Penrose R., “The twistor programme”, Reports on Mathematical Physics, 12 (1977), 65–76 | DOI | MR

[9] Taubes C., “The Seiberg–Witten invariant and symplectic forms”, Math. Res. Lett., 1 (1994), 809–822 | MR | Zbl

[10] Tyurin A., “Six lectures on four manifolds”, Lect. Notes in Math., 1646, Springer, 1646, 186–246 | MR

[11] Tyurin N. A., “Neobkhodimoe i dostatochnoe usloviya deformatsii $B$-monopolya v instanton”, Izv. RAN. Ser. matem., 60:1 (1996), 217–231 | MR | Zbl

[12] Tyurin N. A., “Abelevy monopoli i kompleksnaya geometriya”, Matem. zametki, 65:3 (1998), 420–428 | MR

[13] Tyurin N. A., “Abelevy monopoli: sluchai polozhitelnoi razmernosti mnogoobrazii modulei”, Izv. RAN. Ser. matem., 64:1 (2000), 197–210 | MR | Zbl

[14] Witten E., “Monopoles and 4-manifolds”, Math. Res. Lett., 1 (1994), 769–796 | MR | Zbl