Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_2001_65_1_a7, author = {A. N. Tyurin}, title = {Non-abelian analogues of {Abel's} theorem}, journal = {Izvestiya. Mathematics }, pages = {123--180}, publisher = {mathdoc}, volume = {65}, number = {1}, year = {2001}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_2001_65_1_a7/} }
A. N. Tyurin. Non-abelian analogues of Abel's theorem. Izvestiya. Mathematics , Tome 65 (2001) no. 1, pp. 123-180. http://geodesic.mathdoc.fr/item/IM2_2001_65_1_a7/
[1] Arnold V. I., “Zamechaniya o sobstvennykh chislakh i vektorakh ermitovykh matrits, faze Berri, adiabaticheskikh svyaznostyakh i kvantovom effekte Kholla”, Izbrannoe-60, Fazis, M., 1997, 583–604 | MR
[2] Akbulut S., McCarthy J., Casson's invariant for oriented homology 3-spheres, Michigan State Univ., 1986
[3] Atiyah M. F., The geometry and physics of knots, Cambridge University Press, Cambridge, 1990 | MR | Zbl
[4] Beauville A., “Vector bundles on Riemann surfaces and conformal field theory”, Algebraic geometric methods in math. physics, Cacively, 1993, 145–166 | MR
[5] Bauer S., Okonek Ch., The algebraic geometry of representation spaces associated to Seifert fibered homology 3-spheres, Preprint MPI/89–27, Max-Planck-Institut für Math., S. 1–33 | MR
[6] Bar-Natan, On associators and the Grothendieck–Teichmuller groups, I, E-print q-alg/9606021
[7] De Bartolomeis, Tian G., “Stability of complex vector bundles”, J. Diff. Geom., 43 (1996), 231–275 | MR | Zbl
[8] Donaldson S. K., Friedman R., “Connected sums of self-dual manifolds and deformations of singular spaces”, Nonlinearity, 2 (1989), 197–239 | DOI | MR | Zbl
[9] Donaldson S. K., Kronheimer P., The geometry of four-manifolds, Oxford UP, 1990, p. 197–239 | MR | Zbl
[10] Donaldson K., Thomas R. P., Gauge theory in higher dimensions, Preprint, Oxford, 1996, P. 1–15
[11] Van Straten Duco, “A quintic hypersurface in $\mathbb P^4$ with 130 nodes”, Topology, 32:4 (1993), 857–862 | DOI | MR
[12] Griffiths P. A., “Periods of integrals on algebraic manifolds: summary of main results and discussion”, Bull. Amer. Math. Soc., 75 (1970), 228–296 | DOI | MR
[13] Gorodentsev A., Tyurin A., ALAG, Preprint No 130, Max-Planck-Institut fur Mathematik, 1999, P. 1–34
[14] Hitchin N. J., “Flat connections and geometric quantization”, Commun. Math. Phys., 131 (1990), 347–380 | DOI | MR | Zbl
[15] Jeffrey L. C., Weitsman J., “Bohr–Sommerfeld orbits in the moduli space of flat connections and the Verlinde dimension formula”, Commun. Math. Phys., 150 (1992), 593–630 | DOI | MR | Zbl
[16] Kirbi R., “Problems in low-dimensional topology”, AMS/IP Studies in Advanced Mathematics, V. 2, Part 2, 1997
[17] Kohno T., “Topological invariants for 3-manifolds using representations of mapping class group, I”, Topology, 31 (1992), 203–217 | DOI | MR
[18] Kohno T., “Topological invariants for 3-manifolds using representations of mapping class group. II: Estimating tunnel number of knots”, Contemporary mathematics, 175 (1994), 193–217 | MR | Zbl
[19] Lee Y., Smoothing of simple normal crossing surfaces, Preprint, Solt Lake, 1997, P. 1–11
[20] Mukai S., “On the moduli space of bundles on K3-surface, I”, Vector bundles on algebraic varieties, Tata Inst. of Fund. Res. Studies, 11, Oxford Univ. Press, Bombay, 1984, 341–413 | MR
[21] Narasimhan M. S., Ramanan S., “Moduli of vector bundles on a compact Riemann surface”, Ann. of Math., 89 (1969), 19–51 | DOI | MR
[22] Ramadas T. R., Singer I. M., Weitsman J., “Some comments on Chern–Simons gauge theory”, Commun. Math. Phys., 126 (1989), 409–420 | DOI | MR | Zbl
[23] Strominger A., Yau S.-T., Zaslow E., “Mirror Symmetry is $T$-Duality”, Nucl. Phys., 479 (1996), 243–259 | DOI | MR | Zbl
[24] Taubes C. H., “Casson's invariant and gauge theory”, J. Diff. Geom., 31 (1990), 547–599 | MR | Zbl
[25] Thomas R. P., Mirror symmetry and action of braid groups on derived categories, AG/0001044
[26] Tyurin A. N., “Spetsialnaya lagranzheva geometriya kak malaya deformatsiya algebraicheskoi geometrii ($GQP$ i zerkalnaya simmetriya)”, Izv. RAN. Ser. matem., 64:2 (2000), 141–242 | MR
[27] Tyurin A. N., “O bazisakh Bora–Zommerfelda”, Izv. RAN. Ser. matem., 64:5 (2000), 163–196 | MR | Zbl
[28] Tyurin A. N., “Simplekticheskie struktury na mnogoobraziyakh modulei vektornykh rassloenii na algebraicheskikh poverkhnostyakh s $p_g>0$”, Izv. AN SSSR. Ser matem., 52:4 (1988), 813–852 | MR | Zbl
[29] Vafa C., Extending mirror conjecture to Calabi–Yau with bundle, E-print hep-th/9804131 | MR
[30] Vafa C., Geometric Physics, E-print hep-th/9810149 | MR