Non-abelian analogues of Abel's theorem
Izvestiya. Mathematics , Tome 65 (2001) no. 1, pp. 123-180

Voir la notice de l'article provenant de la source Math-Net.Ru

Vafa [29] extended a version of mirror symmetry to pairs consisting of a Calabi–Yau manifold and a fixed vector bundle on it. In [30] he considered the mathematical meaning of this extension. In this paper we prove the main facts concerning the geometry of vector bundles on Calabi–Yau manifolds and describe all constructions that enable us to embed them in the general context of modern physical concepts.
@article{IM2_2001_65_1_a7,
     author = {A. N. Tyurin},
     title = {Non-abelian analogues of {Abel's} theorem},
     journal = {Izvestiya. Mathematics },
     pages = {123--180},
     publisher = {mathdoc},
     volume = {65},
     number = {1},
     year = {2001},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2001_65_1_a7/}
}
TY  - JOUR
AU  - A. N. Tyurin
TI  - Non-abelian analogues of Abel's theorem
JO  - Izvestiya. Mathematics 
PY  - 2001
SP  - 123
EP  - 180
VL  - 65
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2001_65_1_a7/
LA  - en
ID  - IM2_2001_65_1_a7
ER  - 
%0 Journal Article
%A A. N. Tyurin
%T Non-abelian analogues of Abel's theorem
%J Izvestiya. Mathematics 
%D 2001
%P 123-180
%V 65
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2001_65_1_a7/
%G en
%F IM2_2001_65_1_a7
A. N. Tyurin. Non-abelian analogues of Abel's theorem. Izvestiya. Mathematics , Tome 65 (2001) no. 1, pp. 123-180. http://geodesic.mathdoc.fr/item/IM2_2001_65_1_a7/