Non-abelian analogues of Abel's theorem
Izvestiya. Mathematics , Tome 65 (2001) no. 1, pp. 123-180.

Voir la notice de l'article provenant de la source Math-Net.Ru

Vafa [29] extended a version of mirror symmetry to pairs consisting of a Calabi–Yau manifold and a fixed vector bundle on it. In [30] he considered the mathematical meaning of this extension. In this paper we prove the main facts concerning the geometry of vector bundles on Calabi–Yau manifolds and describe all constructions that enable us to embed them in the general context of modern physical concepts.
@article{IM2_2001_65_1_a7,
     author = {A. N. Tyurin},
     title = {Non-abelian analogues of {Abel's} theorem},
     journal = {Izvestiya. Mathematics },
     pages = {123--180},
     publisher = {mathdoc},
     volume = {65},
     number = {1},
     year = {2001},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2001_65_1_a7/}
}
TY  - JOUR
AU  - A. N. Tyurin
TI  - Non-abelian analogues of Abel's theorem
JO  - Izvestiya. Mathematics 
PY  - 2001
SP  - 123
EP  - 180
VL  - 65
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2001_65_1_a7/
LA  - en
ID  - IM2_2001_65_1_a7
ER  - 
%0 Journal Article
%A A. N. Tyurin
%T Non-abelian analogues of Abel's theorem
%J Izvestiya. Mathematics 
%D 2001
%P 123-180
%V 65
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2001_65_1_a7/
%G en
%F IM2_2001_65_1_a7
A. N. Tyurin. Non-abelian analogues of Abel's theorem. Izvestiya. Mathematics , Tome 65 (2001) no. 1, pp. 123-180. http://geodesic.mathdoc.fr/item/IM2_2001_65_1_a7/

[1] Arnold V. I., “Zamechaniya o sobstvennykh chislakh i vektorakh ermitovykh matrits, faze Berri, adiabaticheskikh svyaznostyakh i kvantovom effekte Kholla”, Izbrannoe-60, Fazis, M., 1997, 583–604 | MR

[2] Akbulut S., McCarthy J., Casson's invariant for oriented homology 3-spheres, Michigan State Univ., 1986

[3] Atiyah M. F., The geometry and physics of knots, Cambridge University Press, Cambridge, 1990 | MR | Zbl

[4] Beauville A., “Vector bundles on Riemann surfaces and conformal field theory”, Algebraic geometric methods in math. physics, Cacively, 1993, 145–166 | MR

[5] Bauer S., Okonek Ch., The algebraic geometry of representation spaces associated to Seifert fibered homology 3-spheres, Preprint MPI/89–27, Max-Planck-Institut für Math., S. 1–33 | MR

[6] Bar-Natan, On associators and the Grothendieck–Teichmuller groups, I, E-print q-alg/9606021

[7] De Bartolomeis, Tian G., “Stability of complex vector bundles”, J. Diff. Geom., 43 (1996), 231–275 | MR | Zbl

[8] Donaldson S. K., Friedman R., “Connected sums of self-dual manifolds and deformations of singular spaces”, Nonlinearity, 2 (1989), 197–239 | DOI | MR | Zbl

[9] Donaldson S. K., Kronheimer P., The geometry of four-manifolds, Oxford UP, 1990, p. 197–239 | MR | Zbl

[10] Donaldson K., Thomas R. P., Gauge theory in higher dimensions, Preprint, Oxford, 1996, P. 1–15

[11] Van Straten Duco, “A quintic hypersurface in $\mathbb P^4$ with 130 nodes”, Topology, 32:4 (1993), 857–862 | DOI | MR

[12] Griffiths P. A., “Periods of integrals on algebraic manifolds: summary of main results and discussion”, Bull. Amer. Math. Soc., 75 (1970), 228–296 | DOI | MR

[13] Gorodentsev A., Tyurin A., ALAG, Preprint No 130, Max-Planck-Institut fur Mathematik, 1999, P. 1–34

[14] Hitchin N. J., “Flat connections and geometric quantization”, Commun. Math. Phys., 131 (1990), 347–380 | DOI | MR | Zbl

[15] Jeffrey L. C., Weitsman J., “Bohr–Sommerfeld orbits in the moduli space of flat connections and the Verlinde dimension formula”, Commun. Math. Phys., 150 (1992), 593–630 | DOI | MR | Zbl

[16] Kirbi R., “Problems in low-dimensional topology”, AMS/IP Studies in Advanced Mathematics, V. 2, Part 2, 1997

[17] Kohno T., “Topological invariants for 3-manifolds using representations of mapping class group, I”, Topology, 31 (1992), 203–217 | DOI | MR

[18] Kohno T., “Topological invariants for 3-manifolds using representations of mapping class group. II: Estimating tunnel number of knots”, Contemporary mathematics, 175 (1994), 193–217 | MR | Zbl

[19] Lee Y., Smoothing of simple normal crossing surfaces, Preprint, Solt Lake, 1997, P. 1–11

[20] Mukai S., “On the moduli space of bundles on K3-surface, I”, Vector bundles on algebraic varieties, Tata Inst. of Fund. Res. Studies, 11, Oxford Univ. Press, Bombay, 1984, 341–413 | MR

[21] Narasimhan M. S., Ramanan S., “Moduli of vector bundles on a compact Riemann surface”, Ann. of Math., 89 (1969), 19–51 | DOI | MR

[22] Ramadas T. R., Singer I. M., Weitsman J., “Some comments on Chern–Simons gauge theory”, Commun. Math. Phys., 126 (1989), 409–420 | DOI | MR | Zbl

[23] Strominger A., Yau S.-T., Zaslow E., “Mirror Symmetry is $T$-Duality”, Nucl. Phys., 479 (1996), 243–259 | DOI | MR | Zbl

[24] Taubes C. H., “Casson's invariant and gauge theory”, J. Diff. Geom., 31 (1990), 547–599 | MR | Zbl

[25] Thomas R. P., Mirror symmetry and action of braid groups on derived categories, AG/0001044

[26] Tyurin A. N., “Spetsialnaya lagranzheva geometriya kak malaya deformatsiya algebraicheskoi geometrii ($GQP$ i zerkalnaya simmetriya)”, Izv. RAN. Ser. matem., 64:2 (2000), 141–242 | MR

[27] Tyurin A. N., “O bazisakh Bora–Zommerfelda”, Izv. RAN. Ser. matem., 64:5 (2000), 163–196 | MR | Zbl

[28] Tyurin A. N., “Simplekticheskie struktury na mnogoobraziyakh modulei vektornykh rassloenii na algebraicheskikh poverkhnostyakh s $p_g>0$”, Izv. AN SSSR. Ser matem., 52:4 (1988), 813–852 | MR | Zbl

[29] Vafa C., Extending mirror conjecture to Calabi–Yau with bundle, E-print hep-th/9804131 | MR

[30] Vafa C., Geometric Physics, E-print hep-th/9810149 | MR