On the structure of two-dimensional local skew fields
Izvestiya. Mathematics , Tome 65 (2001) no. 1, pp. 23-55.

Voir la notice de l'article provenant de la source Math-Net.Ru

The concept of $n$-dimensional local skew field is a direct generalization of the concept of $n$-dimensional local field. We study 2-dimensional local skew fields and solve the classification problem for the those of characteristic 0 whose last residue field is contained in the centre, and suggest a condition under which there is a section of the residue map whose first residue skew field is commutative. Under this condition we solve the classification problem for all 2-dimensional local skew fields. For skew fields of characteristic 0 whose last residue field is contained in the centre, we state a criterion for two elements to be conjugate.
@article{IM2_2001_65_1_a1,
     author = {A. B. Zheglov},
     title = {On the structure of two-dimensional local skew fields},
     journal = {Izvestiya. Mathematics },
     pages = {23--55},
     publisher = {mathdoc},
     volume = {65},
     number = {1},
     year = {2001},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2001_65_1_a1/}
}
TY  - JOUR
AU  - A. B. Zheglov
TI  - On the structure of two-dimensional local skew fields
JO  - Izvestiya. Mathematics 
PY  - 2001
SP  - 23
EP  - 55
VL  - 65
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2001_65_1_a1/
LA  - en
ID  - IM2_2001_65_1_a1
ER  - 
%0 Journal Article
%A A. B. Zheglov
%T On the structure of two-dimensional local skew fields
%J Izvestiya. Mathematics 
%D 2001
%P 23-55
%V 65
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2001_65_1_a1/
%G en
%F IM2_2001_65_1_a1
A. B. Zheglov. On the structure of two-dimensional local skew fields. Izvestiya. Mathematics , Tome 65 (2001) no. 1, pp. 23-55. http://geodesic.mathdoc.fr/item/IM2_2001_65_1_a1/

[1] Shilling O. F. G., The theory of Valuations, AMS, Providence, 1956

[2] Serre J. P., Corps locaux, Hermann, Paris, 1962 | MR | Zbl

[3] Fimmel T., Parshin A. N., Introduction to the Higher Adelic Theory, Preprint, 1996 | MR

[4] Parshin A. N., “K arifmetike dvumernykh skhem”, Izv. AN SSSR. Ser. matem., 40:4 (1976), 736–773 | MR | Zbl

[5] Parshin A. N., “Kogomologii Galua i gruppy Brauera lokalnykh polei”, Tr. Matem. in-ta im. V. A. Steklova AN SSSR, 183, 1990, 159–169 | MR | Zbl

[6] Parshin A. N., “O koltse formalnykh psevdodifferentsialnykh operatorov”, Tr. Matem. in-ta im. V. A. Steklova RAN, 224, 1999, 291–305 | MR | Zbl

[7] Cohn P. M., Skew-fields, Cambridge University Press, 1997 | MR | Zbl

[8] Yekutieli A., “An explicit construction of the Grothendieck residue complex”, Asterisque, 208 (1992) | MR | Zbl