Solubility of the transport equation in the kinetics of coagulation and fragmentation
Izvestiya. Mathematics , Tome 65 (2001) no. 1, pp. 1-22.

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove a local existence theorem for a continuous solution of the spatially inhomogeneous kinetic coagulation-fragmentation model of Smoluchowski. Then we prove the solubility of the problem in the large in the class of continuous functions. It is important to emphasize that we admit unbounded integral kernels in both cases. The uniqueness of the solution and its continuous dependence on the input data are also demonstrated.
@article{IM2_2001_65_1_a0,
     author = {P. B. Dubovski},
     title = {Solubility of the transport equation in the kinetics of coagulation and fragmentation},
     journal = {Izvestiya. Mathematics },
     pages = {1--22},
     publisher = {mathdoc},
     volume = {65},
     number = {1},
     year = {2001},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2001_65_1_a0/}
}
TY  - JOUR
AU  - P. B. Dubovski
TI  - Solubility of the transport equation in the kinetics of coagulation and fragmentation
JO  - Izvestiya. Mathematics 
PY  - 2001
SP  - 1
EP  - 22
VL  - 65
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2001_65_1_a0/
LA  - en
ID  - IM2_2001_65_1_a0
ER  - 
%0 Journal Article
%A P. B. Dubovski
%T Solubility of the transport equation in the kinetics of coagulation and fragmentation
%J Izvestiya. Mathematics 
%D 2001
%P 1-22
%V 65
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2001_65_1_a0/
%G en
%F IM2_2001_65_1_a0
P. B. Dubovski. Solubility of the transport equation in the kinetics of coagulation and fragmentation. Izvestiya. Mathematics , Tome 65 (2001) no. 1, pp. 1-22. http://geodesic.mathdoc.fr/item/IM2_2001_65_1_a0/

[1] Voloschuk V. M., Sedunov Yu. S., Protsessy koagulyatsii v dispersnykh sistemakh, Gidrometeoizdat, L., 1975

[2] Barrow J. D., “Coagulation with fragmentation”, J. Phys. A. Math. Gen., 14 (1981), 729–733 | DOI | MR | Zbl

[3] Martynov M. M., Muller V. M., “Uravneniya kinetiki koagulyatsii s uchetom raspada obrazuyuschikhsya agregatov”, DAN SSSR, 207:5 (1972), 1161–1164

[4] Melzak Z. A., “A scalar transport equation”, Trans. Amer. Math. Soc., 85 (1957), 547–560 | DOI | MR | Zbl

[5] Dubovski\v {ı} P. B., Mathematical theory of coagulation, Seoul National Univ., Research Inst. of Math., Global Analysis Research Center, Seoul, 1994 | MR | Zbl

[6] Burobin A. V., “O suschestvovanii i edinstvennosti resheniya zadachi Koshi dlya prostranstvenno neodnorodnogo uravneniya koagulyatsii”, Differents. uravn., 19 (1983), 1568–1579 | MR | Zbl

[7] Galkin V. A., “O resheniyakh uravneniya Smolukhovskogo dlya prostranstvenno neodnorodnykh sistem”, DAN SSSR, 285 (1985), 1087–1091 | MR

[8] Galkin V. A., “Obobschennye resheniya prostranstvenno neodnorodnogo uravneniya koagulyatsii”, DAN SSSR, 293 (1987), 74–77 | MR

[9] Burobin A. V., “O zadache Koshi dlya prostranstvenno neodnorodnogo uravneniya koagulyatsii pri uchete diffuzii”, Differents. uravn., 21:10 (1985), 1806–1808 | MR | Zbl

[10] Collet J. F., Poupaud F., “Existence of solutions to coagulation–fragmentation systems with diffusion”, Transport Theory Stat. Phys., 25:3–5 (1996), 503–513 | DOI | MR | Zbl

[11] Bénilan P., Wrzosek D., “On an infinite system of reaction-diffusion equations”, Advances in Mathematical Sciences and Applications, 7:1 (1997), 351–366 | MR

[12] Wrzosek D., “Existence of solutions for the discrete coagulation–fragmentation model with diffusion”, Topological Methods in Nonlinear Analysis, 9 (1997), 279–296 | MR | Zbl

[13] Laurencot Ph., Wrzosek D., “The Becker–Döring model with diffusion. I: Basic properties of solutions”, Colloquium Mathematicum, 75:2 (1998), 245–269 | MR | Zbl

[14] Slemrod M., “Coagulation–diffusion systems: derivation and existence of solutions for the diffuse interface structure equations”, Physica D, 46 (1990), 351–366 | DOI | MR | Zbl

[15] Laurencot Ph., Wrzosek D., “Fragmentation–diffusion model. Existence of solutions and their asymptotic behaviour”, Proc. Royal Soc. Edinburgh, 128A (1998), 759–774 | MR

[16] Laurencot Ph., Wrzosek D., “The Becker–Döring model with diffusion. II: Long time behavior”, J. Differ. Eqs., 148 (1998), 268–291 | DOI | MR | Zbl

[17] Slemrod M., Qi A., Grinfeld M., Stewart I., “A discrete velocity coagulation–fragmentation model”, Math. Meth. Appl. Sci., 18 (1995), 959–993 | DOI | MR | Zbl

[18] Galkin V. A., “Ob ustoichivosti i stabilizatsii resheniya uravneniya koagulyatsii”, Differents. uravn., 14 (1978), 1863–1874 | MR | Zbl

[19] Vedenyapin V. V., “Differentsialnye formy v prostranstvakh bez normy. Teorema o edinstvennosti $H$-funktsii Boltsmana”, UMN, 43:1 (1988), 159–179 | MR | Zbl

[20] Galkin V. A., Dubovskii P. B., “O resheniyakh uravneniya koagulyatsii s neogranichennymi yadrami”, Differents. uravn., 22 (1986), 504–509 | MR | Zbl

[21] Dubovski\v {ı} P. B., Stewart I. W., “Existence, uniqueness and mass conservation for the coagulation–fragmentation equation”, Math. Meth. Appl. Sci., 19 (1996), 571–591 | 3.0.CO;2-Q class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl

[22] Galkin V. A., “O suschestvovanii i edinstvennosti resheniya uravneniya koagulyatsii”, Differents. uravn., 13 (1977), 1460–1470 | MR | Zbl

[23] Stewart I. W., “A uniqueness theorem for the coagulation–fragmentation equation”, Math. Proc. Camb. Phil. Soc., 107 (1990), 573–578 | DOI | MR | Zbl