Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_2001_65_1_a0, author = {P. B. Dubovski}, title = {Solubility of the transport equation in the kinetics of coagulation and fragmentation}, journal = {Izvestiya. Mathematics }, pages = {1--22}, publisher = {mathdoc}, volume = {65}, number = {1}, year = {2001}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_2001_65_1_a0/} }
P. B. Dubovski. Solubility of the transport equation in the kinetics of coagulation and fragmentation. Izvestiya. Mathematics , Tome 65 (2001) no. 1, pp. 1-22. http://geodesic.mathdoc.fr/item/IM2_2001_65_1_a0/
[1] Voloschuk V. M., Sedunov Yu. S., Protsessy koagulyatsii v dispersnykh sistemakh, Gidrometeoizdat, L., 1975
[2] Barrow J. D., “Coagulation with fragmentation”, J. Phys. A. Math. Gen., 14 (1981), 729–733 | DOI | MR | Zbl
[3] Martynov M. M., Muller V. M., “Uravneniya kinetiki koagulyatsii s uchetom raspada obrazuyuschikhsya agregatov”, DAN SSSR, 207:5 (1972), 1161–1164
[4] Melzak Z. A., “A scalar transport equation”, Trans. Amer. Math. Soc., 85 (1957), 547–560 | DOI | MR | Zbl
[5] Dubovski\v {ı} P. B., Mathematical theory of coagulation, Seoul National Univ., Research Inst. of Math., Global Analysis Research Center, Seoul, 1994 | MR | Zbl
[6] Burobin A. V., “O suschestvovanii i edinstvennosti resheniya zadachi Koshi dlya prostranstvenno neodnorodnogo uravneniya koagulyatsii”, Differents. uravn., 19 (1983), 1568–1579 | MR | Zbl
[7] Galkin V. A., “O resheniyakh uravneniya Smolukhovskogo dlya prostranstvenno neodnorodnykh sistem”, DAN SSSR, 285 (1985), 1087–1091 | MR
[8] Galkin V. A., “Obobschennye resheniya prostranstvenno neodnorodnogo uravneniya koagulyatsii”, DAN SSSR, 293 (1987), 74–77 | MR
[9] Burobin A. V., “O zadache Koshi dlya prostranstvenno neodnorodnogo uravneniya koagulyatsii pri uchete diffuzii”, Differents. uravn., 21:10 (1985), 1806–1808 | MR | Zbl
[10] Collet J. F., Poupaud F., “Existence of solutions to coagulation–fragmentation systems with diffusion”, Transport Theory Stat. Phys., 25:3–5 (1996), 503–513 | DOI | MR | Zbl
[11] Bénilan P., Wrzosek D., “On an infinite system of reaction-diffusion equations”, Advances in Mathematical Sciences and Applications, 7:1 (1997), 351–366 | MR
[12] Wrzosek D., “Existence of solutions for the discrete coagulation–fragmentation model with diffusion”, Topological Methods in Nonlinear Analysis, 9 (1997), 279–296 | MR | Zbl
[13] Laurencot Ph., Wrzosek D., “The Becker–Döring model with diffusion. I: Basic properties of solutions”, Colloquium Mathematicum, 75:2 (1998), 245–269 | MR | Zbl
[14] Slemrod M., “Coagulation–diffusion systems: derivation and existence of solutions for the diffuse interface structure equations”, Physica D, 46 (1990), 351–366 | DOI | MR | Zbl
[15] Laurencot Ph., Wrzosek D., “Fragmentation–diffusion model. Existence of solutions and their asymptotic behaviour”, Proc. Royal Soc. Edinburgh, 128A (1998), 759–774 | MR
[16] Laurencot Ph., Wrzosek D., “The Becker–Döring model with diffusion. II: Long time behavior”, J. Differ. Eqs., 148 (1998), 268–291 | DOI | MR | Zbl
[17] Slemrod M., Qi A., Grinfeld M., Stewart I., “A discrete velocity coagulation–fragmentation model”, Math. Meth. Appl. Sci., 18 (1995), 959–993 | DOI | MR | Zbl
[18] Galkin V. A., “Ob ustoichivosti i stabilizatsii resheniya uravneniya koagulyatsii”, Differents. uravn., 14 (1978), 1863–1874 | MR | Zbl
[19] Vedenyapin V. V., “Differentsialnye formy v prostranstvakh bez normy. Teorema o edinstvennosti $H$-funktsii Boltsmana”, UMN, 43:1 (1988), 159–179 | MR | Zbl
[20] Galkin V. A., Dubovskii P. B., “O resheniyakh uravneniya koagulyatsii s neogranichennymi yadrami”, Differents. uravn., 22 (1986), 504–509 | MR | Zbl
[21] Dubovski\v {ı} P. B., Stewart I. W., “Existence, uniqueness and mass conservation for the coagulation–fragmentation equation”, Math. Meth. Appl. Sci., 19 (1996), 571–591 | 3.0.CO;2-Q class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl
[22] Galkin V. A., “O suschestvovanii i edinstvennosti resheniya uravneniya koagulyatsii”, Differents. uravn., 13 (1977), 1460–1470 | MR | Zbl
[23] Stewart I. W., “A uniqueness theorem for the coagulation–fragmentation equation”, Math. Proc. Camb. Phil. Soc., 107 (1990), 573–578 | DOI | MR | Zbl