Solubility of the transport equation in the kinetics of coagulation and fragmentation
Izvestiya. Mathematics , Tome 65 (2001) no. 1, pp. 1-22

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove a local existence theorem for a continuous solution of the spatially inhomogeneous kinetic coagulation-fragmentation model of Smoluchowski. Then we prove the solubility of the problem in the large in the class of continuous functions. It is important to emphasize that we admit unbounded integral kernels in both cases. The uniqueness of the solution and its continuous dependence on the input data are also demonstrated.
@article{IM2_2001_65_1_a0,
     author = {P. B. Dubovski},
     title = {Solubility of the transport equation in the kinetics of coagulation and fragmentation},
     journal = {Izvestiya. Mathematics },
     pages = {1--22},
     publisher = {mathdoc},
     volume = {65},
     number = {1},
     year = {2001},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2001_65_1_a0/}
}
TY  - JOUR
AU  - P. B. Dubovski
TI  - Solubility of the transport equation in the kinetics of coagulation and fragmentation
JO  - Izvestiya. Mathematics 
PY  - 2001
SP  - 1
EP  - 22
VL  - 65
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2001_65_1_a0/
LA  - en
ID  - IM2_2001_65_1_a0
ER  - 
%0 Journal Article
%A P. B. Dubovski
%T Solubility of the transport equation in the kinetics of coagulation and fragmentation
%J Izvestiya. Mathematics 
%D 2001
%P 1-22
%V 65
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2001_65_1_a0/
%G en
%F IM2_2001_65_1_a0
P. B. Dubovski. Solubility of the transport equation in the kinetics of coagulation and fragmentation. Izvestiya. Mathematics , Tome 65 (2001) no. 1, pp. 1-22. http://geodesic.mathdoc.fr/item/IM2_2001_65_1_a0/