Hilbert series and relations in algebras
Izvestiya. Mathematics , Tome 64 (2000) no. 6, pp. 1297-1311.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $A$be a graded associative algebra over a field, $I\triangleleft A$ an ideal generated by a set $\alpha\subset A$ of homogeneous elements, and $B=A/I$. In this paper we get estimates relating the Hilbert series of the algebras $A$$B$ and the number of elements of $\alpha$. As in the Golod–Shafarevich theorem, these estimates hold with equality exactly for strongly free sets $\alpha$, which gives new characterizations of such sets. As a corollary, we prove that in the class of finitely generated algebras over a field of characteristic zero there is no algorithm to decide (from the given generators and relations of the algebra) whether the radius of convergence of the Hilbert series equals a given rational number, and there is no algorithm to decide whether the value of the Hilbert function at a given point is equal to a given number. We also introduce and study extremal graded algebras (such that taking any quotient strictly increases the radius of convergence of the Hilbert series). In particular, we prove that this class contains free products of two non-trivial algebras, quadratic algebras with one relation and at least three generators, and Artin–Shelter regular non-Noetherian algebras of global dimension 2.
@article{IM2_2000_64_6_a6,
     author = {D. I. Piontkovskii},
     title = {Hilbert series and relations in algebras},
     journal = {Izvestiya. Mathematics },
     pages = {1297--1311},
     publisher = {mathdoc},
     volume = {64},
     number = {6},
     year = {2000},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2000_64_6_a6/}
}
TY  - JOUR
AU  - D. I. Piontkovskii
TI  - Hilbert series and relations in algebras
JO  - Izvestiya. Mathematics 
PY  - 2000
SP  - 1297
EP  - 1311
VL  - 64
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2000_64_6_a6/
LA  - en
ID  - IM2_2000_64_6_a6
ER  - 
%0 Journal Article
%A D. I. Piontkovskii
%T Hilbert series and relations in algebras
%J Izvestiya. Mathematics 
%D 2000
%P 1297-1311
%V 64
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2000_64_6_a6/
%G en
%F IM2_2000_64_6_a6
D. I. Piontkovskii. Hilbert series and relations in algebras. Izvestiya. Mathematics , Tome 64 (2000) no. 6, pp. 1297-1311. http://geodesic.mathdoc.fr/item/IM2_2000_64_6_a6/

[1] Anick D., “Non-commutative graded algebras and their Hilbert series”, J. Algebra, 78 (1982), 120–140 | DOI | MR

[2] Anick D., “Inert sets and the Lie algebra associated to a group”, J. Algebra, 111 (1987), 154–165 | DOI | MR | Zbl

[3] Golod E. S., Shafarevich I. R., “O bashne polei klassov”, Izv. AN SSSR. Ser. matem., 28:2 (1964), 261–272 | MR | Zbl

[4] Golod E. S., “Nekommutativnye polnye peresecheniya i gomologii kompleksa Shafarevicha”, UMN, 52:4 (1997), 201–202 | MR | Zbl

[5] Govorov V. E., “O graduirovannykh algebrakh”, Matem. zametki, 12:2 (1972), 197–204 | MR | Zbl

[6] Anick D., “Diophantine equations, Hilbert series, and undecidable spaces”, Ann. Math., 122 (1985), 87–112 | DOI | MR | Zbl

[7] Latyshev V. N., Kompyuternaya algebra. Standartnye bazisy, Izd-vo MGU, M., 1988 | Zbl

[8] Ufnarovskii V. A., “Kombinatornye i asimptoticheskie metody v algebre”, Sovremennaya matematika i ee prilozheniya, 57 (1990), 5–177 | MR

[9] Halperin S., Lemaire J.-M., “Suites inertes dans les algèbres de Lie graduées”, Math. Scand., 61:1 (1987), 39–67 | MR | Zbl

[10] Anick D., “On the homology of associative algebras”, Trans. Amer. Math. Soc., 296:2 (1986), 641–659 | DOI | MR | Zbl

[11] Artin M., Shelter W., “Graded algebras of global dimension 3”, Adv. Math., 66 (1987), 171–216 | DOI | MR | Zbl

[12] Artin M., Tate J., van den Bergh M., “Some algebras related to authomorphisma of elliptic curves”, The Grothendieck Festschrift, V. 1, Birkhauser, Boston, 1990, 33–85 | MR | Zbl

[13] Stephenson D. R., “Artin–Shelter regular of global dimension three”, J. Algebra, 183:1 (1996), 55–73 | DOI | MR | Zbl

[14] Zhang J. J., “Non-Noetherian regular rings of dimension 2”, Proc. AMS, 126:6 (1998), 1645–1653 | DOI | MR | Zbl

[15] Anick D., “Generic algebras and CW-complexes”, Proc. of 1983 Conf. on algebra, topol. and $K$-theory, in honor of John Moore, Princeton Univ., 1988, 247–331 | MR