An explicit lower bound for a~homogeneous rational linear form in the logarithms of algebraic numbers.~II
Izvestiya. Mathematics , Tome 64 (2000) no. 6, pp. 1217-1269
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper we establish an estimate for the modulus of a linear form of the type described in the title. This estimate is exponential with respect to the number of summands.
@article{IM2_2000_64_6_a4,
author = {E. M. Matveev},
title = {An explicit lower bound for a~homogeneous rational linear form in the logarithms of algebraic {numbers.~II}},
journal = {Izvestiya. Mathematics },
pages = {1217--1269},
publisher = {mathdoc},
volume = {64},
number = {6},
year = {2000},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_2000_64_6_a4/}
}
TY - JOUR AU - E. M. Matveev TI - An explicit lower bound for a~homogeneous rational linear form in the logarithms of algebraic numbers.~II JO - Izvestiya. Mathematics PY - 2000 SP - 1217 EP - 1269 VL - 64 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IM2_2000_64_6_a4/ LA - en ID - IM2_2000_64_6_a4 ER -
E. M. Matveev. An explicit lower bound for a~homogeneous rational linear form in the logarithms of algebraic numbers.~II. Izvestiya. Mathematics , Tome 64 (2000) no. 6, pp. 1217-1269. http://geodesic.mathdoc.fr/item/IM2_2000_64_6_a4/