Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_2000_64_6_a4, author = {E. M. Matveev}, title = {An explicit lower bound for a~homogeneous rational linear form in the logarithms of algebraic {numbers.~II}}, journal = {Izvestiya. Mathematics }, pages = {1217--1269}, publisher = {mathdoc}, volume = {64}, number = {6}, year = {2000}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_2000_64_6_a4/} }
TY - JOUR AU - E. M. Matveev TI - An explicit lower bound for a~homogeneous rational linear form in the logarithms of algebraic numbers.~II JO - Izvestiya. Mathematics PY - 2000 SP - 1217 EP - 1269 VL - 64 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IM2_2000_64_6_a4/ LA - en ID - IM2_2000_64_6_a4 ER -
E. M. Matveev. An explicit lower bound for a~homogeneous rational linear form in the logarithms of algebraic numbers.~II. Izvestiya. Mathematics , Tome 64 (2000) no. 6, pp. 1217-1269. http://geodesic.mathdoc.fr/item/IM2_2000_64_6_a4/
[1] Matveev E. M., “Yavnaya nizhnyaya otsenka odnorodnoi ratsionalnoi lineinoi formy ot logarifmov algebraicheskikh chisel”, Izv. RAN. Ser. matem., 62:4 (1998), 81–136 | MR | Zbl
[2] Waldschmidt M., “A lower bound for linear forms in logarithms”, Acta Arithm., 37 (1980), 257–283 | MR | Zbl
[3] Matveev E. M., “Otsenka lineinoi formy ot logarifmov algebraicheskikh chisel”, Tez. dokl. vsesoyuzn. konf. “Teoriya transtsendentnykh chisel i ee prilozheniya” (M., 2–4 fevr. 1983 g.), Izd-vo MGU, M., 1983, 86
[4] Baker A., Wüstholz G., “Logarithmic forms and group varieties”, J. reine angew. Math., 442 (1993), 19–62 | MR | Zbl
[5] Matveev E. M., “O posledovatelnykh minimumakh rasshirennoi logarifmicheskoi vysoty algebraicheskikh chisel”, Matem. sb., 190:3 (1999), 89–108 | MR | Zbl
[6] Feldman N. I., “Approximations of number $\pi$ by algebraic numbers from special fields”, J. Number Theory, 9:1 (1977), 48–60 | DOI | MR | Zbl
[7] Kassels Dzh. V. S., Vvedenie v geometriyu chisel, Mir, M., 1965 | MR
[8] Matveev E. M., “O lineinykh i multiplikativnykh sootnosheniyakh”, Matem. sb., 184:4 (1993), 23–40 | MR | Zbl
[9] Borevich Z. I., Shafarevich I. R., Teoriya chisel, Nauka, M., 1972 | MR
[10] Leng S., Osnovy diofantovoi geometrii, Mir, M., 1986 | MR | Zbl
[11] Matveev E. M., “Ob algebraicheskikh chislakh maloi logarifmicheskoi vysoty”, Diofantovy priblizheniya, Sb. statei, posvyaschennykh pamyati N. I. Feldmana, ed. Yu. V. Nesterenko, Izd-vo MGU, M., 1996, 90–98
[12] Gelfond A. O., Feldman N. I., “O nizhnikh granitsakh lineinykh form ot trekh logarifmov algebraicheskikh chisel”, Vestn. MGU. Ser. matem., mekhan., 1949, no. 5, 13–16; Гельфонд А. О., Избранные труды, Наука, М., 1973, 155–158 | MR
[13] Matveev E. M., “Ob arifmeticheskikh svoistvakh znachenii obobschennykh binomialnykh mnogochlenov”, Matem. zametki, 54:4 (1993), 76–81 | MR | Zbl
[14] Baker A., “A sharpening of the bounds for linear forms in logarithms, III”, Acta Arithm., 27 (1975), 247–252 | MR | Zbl
[15] Baker A., Stark H. M., “On a fundamental inequality in number theory”, Ann. of Math., 94 (1971), 190–199 | DOI | MR | Zbl
[16] Bombieri E., Vaaler J., “On Siegel's Lemma”, Invent. Math., 73 (1983), 11–32 ; Addendum, Invent. Math., 75 (1984), 377 | DOI | MR | Zbl | DOI | MR
[17] Yu Kunrui, “$p$-adic logarithmic forms and group varieties, I”, J. reine angew. Math., 502 (1998), 29–92 | MR | Zbl
[18] Waldschmidt M., “Minorations de combinaisons linéaires de logarithmes de nombres algébriques”, Canad. J. Math., 45:1 (1993), 176–224 | MR | Zbl
[19] Wüstholz G., “A new approach to Baker's theorem on linear forms in logarithms, III”, New advances in transcendence theory, ed. A. Baker, Cambridge Univ. Press, Cambridge, 1988, 399–410 | MR
[20] Leikhtveis K., Vypuklye mnozhestva, Nauka, M., 1985 | MR
[21] Vaaler J. D., “A geometric inequality with application to linear forms”, Pacific. J. Math., 83 (1979), 543–553 | MR | Zbl
[22] Bertrand D., “Duality on tori and multiplicative dependence relations”, J. Austral. Math. Soc. Ser. A, 62 (1997), 198–216 | DOI | MR | Zbl
[23] Meyer M., Pajor A., “Sections of the unit ball of $l_p^n$”, J. Func. Anal., 80 (1988), 109–123 | DOI | MR | Zbl