Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_2000_64_6_a1, author = {M. A. Korolev}, title = {Incomplete {Kloosterman} sums and their applications}, journal = {Izvestiya. Mathematics }, pages = {1129--1152}, publisher = {mathdoc}, volume = {64}, number = {6}, year = {2000}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_2000_64_6_a1/} }
M. A. Korolev. Incomplete Kloosterman sums and their applications. Izvestiya. Mathematics , Tome 64 (2000) no. 6, pp. 1129-1152. http://geodesic.mathdoc.fr/item/IM2_2000_64_6_a1/
[1] Kloosterman H. D., “On the representation of numbers in the form $ax^2+by^2+cz^2+dt^2$”, Acta Math., 49 (1926), 407–464 | DOI | MR
[2] Salie H., “Über die Kloostermanschen Summen $S(u,v,q)$”, Math. Z., 34 (1931), 91–109 | DOI | MR
[3] Weil A., “On some exponential sums”, Proc. Nat. Acad. Sci. USA, 34 (1948), 204–207 | DOI | MR | Zbl
[4] Carlitz L., Uchiyama S., “Bounds for exponential sums”, Duke Math. J., 24 (1957), 37–41 | DOI | MR | Zbl
[5] Karatsuba A. A., “Raspredelenie obratnykh velichin v koltse vychetov po zadannomu modulyu”, Dokl. RAN, 333:2 (1993), 138–139 | MR | Zbl
[6] Karatsuba A. A., “Drobnye doli spetsialnogo vida funktsii”, Izv. RAN. Ser. matem., 59:4 (1995), 61–80 | MR | Zbl
[7] Karatsuba A. A., “Analogi summ Kloostermana”, Izv. RAN. Ser. matem., 59:5 (1995), 93–102 | MR | Zbl
[8] Karatsuba A. A., “Summy drobnykh dolei spetsialnogo vida funktsii”, Dokl. RAN, 349:3 (1996), 302 | MR | Zbl
[9] Karatsuba A. A., “Analogi nepolnykh summ Kloostermana i ikh prilozheniya”, Tatra Mountains Math. Publ., 11 (1997), 89–120 | MR | Zbl
[10] Prakhar K., Raspredelenie prostykh chisel, Mir, M., 1967 | MR
[11] Vinogradov I. M., Metod trigonometricheskikh summ v teorii chisel, 2-e izd., Nauka, M., 1983 | MR