Incomplete Kloosterman sums and their applications
Izvestiya. Mathematics , Tome 64 (2000) no. 6, pp. 1129-1152

Voir la notice de l'article provenant de la source Math-Net.Ru

We obtain a non-trivial estimate for the upper bound of the absolute value of incomplete Kloosterman sums in which the number of terms is much less than the modulus.
@article{IM2_2000_64_6_a1,
     author = {M. A. Korolev},
     title = {Incomplete {Kloosterman} sums and their applications},
     journal = {Izvestiya. Mathematics },
     pages = {1129--1152},
     publisher = {mathdoc},
     volume = {64},
     number = {6},
     year = {2000},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2000_64_6_a1/}
}
TY  - JOUR
AU  - M. A. Korolev
TI  - Incomplete Kloosterman sums and their applications
JO  - Izvestiya. Mathematics 
PY  - 2000
SP  - 1129
EP  - 1152
VL  - 64
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2000_64_6_a1/
LA  - en
ID  - IM2_2000_64_6_a1
ER  - 
%0 Journal Article
%A M. A. Korolev
%T Incomplete Kloosterman sums and their applications
%J Izvestiya. Mathematics 
%D 2000
%P 1129-1152
%V 64
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2000_64_6_a1/
%G en
%F IM2_2000_64_6_a1
M. A. Korolev. Incomplete Kloosterman sums and their applications. Izvestiya. Mathematics , Tome 64 (2000) no. 6, pp. 1129-1152. http://geodesic.mathdoc.fr/item/IM2_2000_64_6_a1/