Linear deformations of discrete groups and constructions of multivalued groups
Izvestiya. Mathematics , Tome 64 (2000) no. 5, pp. 1065-1089.

Voir la notice de l'article provenant de la source Math-Net.Ru

We construct deformations of discrete multivalued groups described as special deformations of their group algebras in the class of finite-dimensional associative algebras. We show that the deformations of ordinary groups producing multivalued groups are defined by cocycles with coefficients in the group algebra of the original group and obtain classification theorems on these deformations. We indicate a connection between the linear deformations of discrete groups introduced in this paper and the well-known constructions of multivalued groups. We describe the manifold of three-dimensional associative commutative algebras with identity element, fixed basis, and a constant number of values. The group algebras of $n$-valued groups of order three (three-dimensional $n$-group algebras) form a discrete set in this manifold.
@article{IM2_2000_64_5_a7,
     author = {P. V. Yagodovskii},
     title = {Linear deformations of discrete groups and constructions of multivalued groups},
     journal = {Izvestiya. Mathematics },
     pages = {1065--1089},
     publisher = {mathdoc},
     volume = {64},
     number = {5},
     year = {2000},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2000_64_5_a7/}
}
TY  - JOUR
AU  - P. V. Yagodovskii
TI  - Linear deformations of discrete groups and constructions of multivalued groups
JO  - Izvestiya. Mathematics 
PY  - 2000
SP  - 1065
EP  - 1089
VL  - 64
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2000_64_5_a7/
LA  - en
ID  - IM2_2000_64_5_a7
ER  - 
%0 Journal Article
%A P. V. Yagodovskii
%T Linear deformations of discrete groups and constructions of multivalued groups
%J Izvestiya. Mathematics 
%D 2000
%P 1065-1089
%V 64
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2000_64_5_a7/
%G en
%F IM2_2000_64_5_a7
P. V. Yagodovskii. Linear deformations of discrete groups and constructions of multivalued groups. Izvestiya. Mathematics , Tome 64 (2000) no. 5, pp. 1065-1089. http://geodesic.mathdoc.fr/item/IM2_2000_64_5_a7/

[1] Bannai E., Ito T., Algebraicheskaya kombinatorika. Skhemy i otnosheniya, Mir, M., 1987 | MR

[2] Bukhshtaber V. M., Riss E. G., “Mnogoznachnye gruppy i $n$-algebry Khopfa”, UMN, 51:4 (1996), 149–150 | MR | Zbl

[3] Bukhshtaber V. M., Vershik A. M., Evdokimov S. A., Ponomarenko I. N., “Kombinatornye algebry i mnogoznachnye gruppy”, Funkts. analiz i ego prilozh., 30:3 (1996), 12–18 | MR

[4] Bukhshtaber V. M., “Funktsionalnye uravneniya, assotsiirovannye s teoremami slozheniya dlya ellipticheskikh funktsii, i dvuznachnye algebraicheskie gruppy”, UMN, 45:3 (1990), 185–186 | MR | Zbl

[5] Lazarev A. Yu., Movshev M. V., “Deformatsii algebr Khopfa”, UMN, 46:1 (1991), 211–212 | MR | Zbl

[6] Yagodovskii P. V., “Deformatsiya mnogoznachnykh grupp”, UMN, 52:3 (1997), 179–180 | MR | Zbl

[7] Arad Z., Blau H., “On table algebras and applications to finite group theory”, J. of algebra, 138 (1991), 137–185 | DOI | MR | Zbl

[8] Buchshtaber V. M., Veselov A. P., “Integrable correspondes and algebraic representations of multivalued groups”, Int. Math. Res. Not., 8 (1996), 381–400 | DOI | MR

[9] Buchshtaber V. M., Rees E. G., “Multivalued groups, their representations and Hopf algebras”, Transformation Groups, 2:4 (1997), 325–349 | DOI | MR

[10] Buchshtaber V. M., Rees E. G., “Multivalued groups, $n$-Hopf algebras and $n$-ring homomorphisms”, Lie groups and Lie Algebras, Kluwer Academic Publishers, Netherlands, 1998, 85–107 | MR

[11] Mazzola G., “The algebraic and geometric classification of associative algebras of dimension five”, Manuscripta math., 27 (1979), 81–101 | DOI | MR | Zbl

[12] Kenneth A. Ross, Daming Xu, “Hypergroup deformation and Markov chains”, J. of theoretical probability, 7:4 (1994), 813–830 | DOI | MR | Zbl

[13] Wildberger N. J., “Lagrange's theorem and integrality for finite commutative hypergroups with applications to strongly regular graphs”, J. of algebra, 182 (1996), 1–37 | DOI | MR | Zbl