Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_2000_64_5_a6, author = {A. N. Tyurin}, title = {On {Bohr--Sommerfeld} bases}, journal = {Izvestiya. Mathematics }, pages = {1033--1064}, publisher = {mathdoc}, volume = {64}, number = {5}, year = {2000}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_2000_64_5_a6/} }
A. N. Tyurin. On Bohr--Sommerfeld bases. Izvestiya. Mathematics , Tome 64 (2000) no. 5, pp. 1033-1064. http://geodesic.mathdoc.fr/item/IM2_2000_64_5_a6/
[1] Arnold V. I., Matematicheskie metody klassicheskoi mekhaniki, Nauka, M., 1989 | MR
[2] Arnold V. I., Givental A. B., “Simplekticheskaya geometriya”, Itogi nauki i tekhniki. Sovremennye problemy matematiki. Fundamentalnye napravleniya, 4, VINITI, M., 1985, 5–140 | MR
[3] Borthwick D., Paul T., Uribe A., “Legendrian distributions with applications to the non-vanishing of Poincaré series of large weight”, Invent. math., 122 (1995), 359–402 ; E-print hep-th/9406036 | DOI | MR | Zbl
[4] Beauville A., “Vector bundles on Riemann surfaces and conformal field theory”, Algebraic geometric methods in math. physics, Cacively, 1993, 145–166 | MR
[5] Dubrovin B. A., Krichever I. M., Novikov S. P., “Integriruemye sistemy”, Itogi nauki i tekhniki. Sovremennye problemy matematiki. Fundamentalnye napravleniya, 4, VINITI, M., 1985, 179–288 | MR
[6] Funar L., On the TQFT representations of the mapping class groups, Math. GT / 9804047, p. 1–21
[7] Goldman W., “Invariant functions on Lie groups and Hamiltonian flows of surface group representations”, Invent. Math., 85 (1986), 263–302 | DOI | MR | Zbl
[8] Guillemin V., Sternberg S., Symplectic techniques in physics, CUP, N.Y., 1983 | MR
[9] Gorodentsev A., Tyurin A., ALAG, Preprint. Series 130, Max-Planck-Institut für Mathematik, 1999, S. 1–34
[10] Guillemin V., “Symplectic spinors and partial differential equations”, Coll. Inter. C.N.R.S., Aix-en-Provence, 1974–1975, 217–252 | MR | Zbl
[11] Hitchin N. J., “Flat connections and geometric quantization”, Commun. Math. Phys., 131 (1990), 347–380 | DOI | MR | Zbl
[12] Jeffrey L. C., Weitsman J., “Bohr–Sommerfeld orbits in the moduli space of flat connections and the Verlinde dimension formula”, Commun. Math. Phys., 150 (1992), 593–630 | DOI | MR | Zbl
[13] Jeffrey L. C., Weitsman J., “Half density quantization of the moduli space of flat connections and Witten's semiclassical invariants”, Topology, 32 (1993), 509–529 | DOI | MR | Zbl
[14] Kohno T., “Topological invariants for 3-manifolds using representations of mapping class group, I”, Topology, 31 (1992), 203–230 | DOI | MR | Zbl
[15] Kohno T., “Topological invariants for 3-manifolds using representations of mapping class group. II: Estimating tunnel number of knots”, Contemporary mathematics, 175 (1994), 193–217 | MR | Zbl
[16] Kirillov A. A., “Geometricheskoe kvantovanie”, Itogi nauki i tekhniki. Sovremennye problemy matematiki. Fundamentalnye napravleniya, 4, VINITI, M., 1985, 141–178 | MR
[17] Moore G., Seiberg N., “Classical and quantum conformal field theory”, Comm. Math. Phys., 123 (1989), 177–254 | DOI | MR | Zbl
[18] Mumford D., Tata lectures on theta, I, Progr. Math., 28, Birkhäuser, 1983 ; Tata lectures on theta. II. Jacobian theta functions and differential equations, Progr. Math., 43, Birkhäuser, 1984 ; Tata lectures on theta, III, Progr. Math., 97, Birkhäuser, 1991 | MR | Zbl | MR | Zbl | MR | Zbl
[19] Oxbury W. M., “Prym varieties and the moduli of spin bundles”, Algebraic geometry, Lect. Notes in Pure App. Math., 200, ed. P. E. Newstead, 351–376 | MR | Zbl
[20] Ramadas T. R., Singer L. M., Weitsman J., “Some comments on Chern–Simmons gauge theory”, Commun. Math. Phys., 126 (1989), 409–420 | DOI | MR | Zbl
[21] Śniatycki J., Geometric quantization and quantum mechanics, Applied Math. Sciences, 30, Springer, 1980 | MR | Zbl
[22] Śniatycki J., “Bohr–Sommerfeld conditions in geometric quantization”, Reports in Math. Phys., 7 (1974), 127–135 | MR
[23] Tyurin A., Quantization and “theta functions”, Preprint/Jussieu Avril 1999. No 216
[24] Tyurin A., Geometric quantization and mirror symmetry, Preprint No 22, Warwick, 1999; , 53 pp. E-print alg-geom/9902027
[25] Tyurin A., Special Lagrangian geometry and slightly deformed algebraic geometry (spLag and sdAG), Preprint No 8, Warwick, 1998; , 45 pp. E-print alg-geom/9806006
[26] Tyurin A., Non-Abelian analogue of Abel's theorem, Preprint No 157, ICTP, 1997, 55 pp.
[27] Tyurin A., Complexification of Bohr–Sommerfeld conditions, Preprint No 15, Inst. of math. of University of Oslo, 1999, 32 pp. | MR
[28] Weinstein A., “Symplectic geometry”, BAMS, 5 (1981), 1–13 | DOI | MR | Zbl
[29] Weinstein A., “Connections of Berry and Hannay type for moving Lagrangian submanifolds”, Advances in Math., 82 (1990), 133–159 | DOI | MR | Zbl
[30] Woodhouse N., Geometric quantization, Oxford Math. Monographs, OUP, Oxford, 1980 | MR
[31] Welters G., “Polarized Abelian varieties and the heat equations”, Comp. Math., 49 (1983), 173–194 | MR | Zbl