On Bohr--Sommerfeld bases
Izvestiya. Mathematics , Tome 64 (2000) no. 5, pp. 1033-1064.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper combines algebraic and Lagrangian geometry to construct a special basis in every space of conformal blocks, the Bohr–Sommerfeld (BS) basis. We use the method of Borthwick–Paul–Uribe [3], in which every vector of a BS basis is determined by some half-weight Legendrian distribution coming from a Bohr–Sommerfeld fibre of a real polarization of the underlying symplectic manifold. The advantage of BS bases (compared to the bases of theta functions in [23]) is that we can use the powerful methods of asymptotic analysis of quantum states. This shows that Bohr–Sommerfeld bases are quasiclassically unitary. Thus we can apply these bases to compare the Hitchin connection [11] and the KZ connection defined by the monodromy of the Knizhnik–Zamolodchikov equation in the combinatorial theory (see, for example, [14] and [15]).
@article{IM2_2000_64_5_a6,
     author = {A. N. Tyurin},
     title = {On {Bohr--Sommerfeld} bases},
     journal = {Izvestiya. Mathematics },
     pages = {1033--1064},
     publisher = {mathdoc},
     volume = {64},
     number = {5},
     year = {2000},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2000_64_5_a6/}
}
TY  - JOUR
AU  - A. N. Tyurin
TI  - On Bohr--Sommerfeld bases
JO  - Izvestiya. Mathematics 
PY  - 2000
SP  - 1033
EP  - 1064
VL  - 64
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2000_64_5_a6/
LA  - en
ID  - IM2_2000_64_5_a6
ER  - 
%0 Journal Article
%A A. N. Tyurin
%T On Bohr--Sommerfeld bases
%J Izvestiya. Mathematics 
%D 2000
%P 1033-1064
%V 64
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2000_64_5_a6/
%G en
%F IM2_2000_64_5_a6
A. N. Tyurin. On Bohr--Sommerfeld bases. Izvestiya. Mathematics , Tome 64 (2000) no. 5, pp. 1033-1064. http://geodesic.mathdoc.fr/item/IM2_2000_64_5_a6/

[1] Arnold V. I., Matematicheskie metody klassicheskoi mekhaniki, Nauka, M., 1989 | MR

[2] Arnold V. I., Givental A. B., “Simplekticheskaya geometriya”, Itogi nauki i tekhniki. Sovremennye problemy matematiki. Fundamentalnye napravleniya, 4, VINITI, M., 1985, 5–140 | MR

[3] Borthwick D., Paul T., Uribe A., “Legendrian distributions with applications to the non-vanishing of Poincaré series of large weight”, Invent. math., 122 (1995), 359–402 ; E-print hep-th/9406036 | DOI | MR | Zbl

[4] Beauville A., “Vector bundles on Riemann surfaces and conformal field theory”, Algebraic geometric methods in math. physics, Cacively, 1993, 145–166 | MR

[5] Dubrovin B. A., Krichever I. M., Novikov S. P., “Integriruemye sistemy”, Itogi nauki i tekhniki. Sovremennye problemy matematiki. Fundamentalnye napravleniya, 4, VINITI, M., 1985, 179–288 | MR

[6] Funar L., On the TQFT representations of the mapping class groups, Math. GT / 9804047, p. 1–21

[7] Goldman W., “Invariant functions on Lie groups and Hamiltonian flows of surface group representations”, Invent. Math., 85 (1986), 263–302 | DOI | MR | Zbl

[8] Guillemin V., Sternberg S., Symplectic techniques in physics, CUP, N.Y., 1983 | MR

[9] Gorodentsev A., Tyurin A., ALAG, Preprint. Series 130, Max-Planck-Institut für Mathematik, 1999, S. 1–34

[10] Guillemin V., “Symplectic spinors and partial differential equations”, Coll. Inter. C.N.R.S., Aix-en-Provence, 1974–1975, 217–252 | MR | Zbl

[11] Hitchin N. J., “Flat connections and geometric quantization”, Commun. Math. Phys., 131 (1990), 347–380 | DOI | MR | Zbl

[12] Jeffrey L. C., Weitsman J., “Bohr–Sommerfeld orbits in the moduli space of flat connections and the Verlinde dimension formula”, Commun. Math. Phys., 150 (1992), 593–630 | DOI | MR | Zbl

[13] Jeffrey L. C., Weitsman J., “Half density quantization of the moduli space of flat connections and Witten's semiclassical invariants”, Topology, 32 (1993), 509–529 | DOI | MR | Zbl

[14] Kohno T., “Topological invariants for 3-manifolds using representations of mapping class group, I”, Topology, 31 (1992), 203–230 | DOI | MR | Zbl

[15] Kohno T., “Topological invariants for 3-manifolds using representations of mapping class group. II: Estimating tunnel number of knots”, Contemporary mathematics, 175 (1994), 193–217 | MR | Zbl

[16] Kirillov A. A., “Geometricheskoe kvantovanie”, Itogi nauki i tekhniki. Sovremennye problemy matematiki. Fundamentalnye napravleniya, 4, VINITI, M., 1985, 141–178 | MR

[17] Moore G., Seiberg N., “Classical and quantum conformal field theory”, Comm. Math. Phys., 123 (1989), 177–254 | DOI | MR | Zbl

[18] Mumford D., Tata lectures on theta, I, Progr. Math., 28, Birkhäuser, 1983 ; Tata lectures on theta. II. Jacobian theta functions and differential equations, Progr. Math., 43, Birkhäuser, 1984 ; Tata lectures on theta, III, Progr. Math., 97, Birkhäuser, 1991 | MR | Zbl | MR | Zbl | MR | Zbl

[19] Oxbury W. M., “Prym varieties and the moduli of spin bundles”, Algebraic geometry, Lect. Notes in Pure App. Math., 200, ed. P. E. Newstead, 351–376 | MR | Zbl

[20] Ramadas T. R., Singer L. M., Weitsman J., “Some comments on Chern–Simmons gauge theory”, Commun. Math. Phys., 126 (1989), 409–420 | DOI | MR | Zbl

[21] Śniatycki J., Geometric quantization and quantum mechanics, Applied Math. Sciences, 30, Springer, 1980 | MR | Zbl

[22] Śniatycki J., “Bohr–Sommerfeld conditions in geometric quantization”, Reports in Math. Phys., 7 (1974), 127–135 | MR

[23] Tyurin A., Quantization and “theta functions”, Preprint/Jussieu Avril 1999. No 216

[24] Tyurin A., Geometric quantization and mirror symmetry, Preprint No 22, Warwick, 1999; , 53 pp. E-print alg-geom/9902027

[25] Tyurin A., Special Lagrangian geometry and slightly deformed algebraic geometry (spLag and sdAG), Preprint No 8, Warwick, 1998; , 45 pp. E-print alg-geom/9806006

[26] Tyurin A., Non-Abelian analogue of Abel's theorem, Preprint No 157, ICTP, 1997, 55 pp.

[27] Tyurin A., Complexification of Bohr–Sommerfeld conditions, Preprint No 15, Inst. of math. of University of Oslo, 1999, 32 pp. | MR

[28] Weinstein A., “Symplectic geometry”, BAMS, 5 (1981), 1–13 | DOI | MR | Zbl

[29] Weinstein A., “Connections of Berry and Hannay type for moving Lagrangian submanifolds”, Advances in Math., 82 (1990), 133–159 | DOI | MR | Zbl

[30] Woodhouse N., Geometric quantization, Oxford Math. Monographs, OUP, Oxford, 1980 | MR

[31] Welters G., “Polarized Abelian varieties and the heat equations”, Comp. Math., 49 (1983), 173–194 | MR | Zbl