Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_2000_64_5_a4, author = {D. D. Pervouchine}, title = {Invariants and orbits of the standard $(\mathrm SL_4(\mathbb C)\times\mathrm SL_4(\mathbb C)\times\mathrm SL_2(\mathbb C))$-module}, journal = {Izvestiya. Mathematics }, pages = {1003--1015}, publisher = {mathdoc}, volume = {64}, number = {5}, year = {2000}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_2000_64_5_a4/} }
TY - JOUR AU - D. D. Pervouchine TI - Invariants and orbits of the standard $(\mathrm SL_4(\mathbb C)\times\mathrm SL_4(\mathbb C)\times\mathrm SL_2(\mathbb C))$-module JO - Izvestiya. Mathematics PY - 2000 SP - 1003 EP - 1015 VL - 64 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IM2_2000_64_5_a4/ LA - en ID - IM2_2000_64_5_a4 ER -
%0 Journal Article %A D. D. Pervouchine %T Invariants and orbits of the standard $(\mathrm SL_4(\mathbb C)\times\mathrm SL_4(\mathbb C)\times\mathrm SL_2(\mathbb C))$-module %J Izvestiya. Mathematics %D 2000 %P 1003-1015 %V 64 %N 5 %I mathdoc %U http://geodesic.mathdoc.fr/item/IM2_2000_64_5_a4/ %G en %F IM2_2000_64_5_a4
D. D. Pervouchine. Invariants and orbits of the standard $(\mathrm SL_4(\mathbb C)\times\mathrm SL_4(\mathbb C)\times\mathrm SL_2(\mathbb C))$-module. Izvestiya. Mathematics , Tome 64 (2000) no. 5, pp. 1003-1015. http://geodesic.mathdoc.fr/item/IM2_2000_64_5_a4/
[1] Gantmacher F. R., The Theory of Matrices, Chelsea, N. Y., 1974
[2] Ja'ja J., “An addendum to Kronecker's theory of pencils”, SIAM J. Appl. Math., 37:3 (1979), 700–712 | DOI | MR | Zbl
[3] Kac V. G., “Some remarks on nilpotent orbits”, J. of Algebra, 64 (1980), 190–213 | DOI | MR | Zbl
[4] Vinberg E. B., “Gruppa Veilya graduirovannoi algebry Li”, Izv. AN SSSR. Ser. matem., 40:3 (1976), 488–526 | MR | Zbl
[5] Vinberg E. B., Popov V. L., “Teoriya invariantov”, Itogi nauki i tekhn. Sovrem. probl. matem. Fundam. napravl., 55, VINITI, M., 1989, 137–309 | MR
[6] Shephard G. S., Todd J. A., “Finite unitary reflection groups”, Canad. J. Math., 6:2 (1954), 274–301 | MR
[7] Vinberg E. B., Elashvili A. G., “Klassifikatsiya trivektorov 9-mernogo prostranstva”, Trudy seminara po vektornomu i tenzornomu analizu, Vyp. 18, no. 2, Izd-vo MGU, M., 1978, 197–233 | MR
[8] Dynkin E. B., “Poluprostye podalgebry poluprostykh algebr Li”, Matem. sb., 30:2 (1952), 349–462 | MR | Zbl