Invariants and orbits of the standard $(\mathrm SL_4(\mathbb C)\times\mathrm SL_4(\mathbb C)\times\mathrm SL_2(\mathbb C))$-module
Izvestiya. Mathematics , Tome 64 (2000) no. 5, pp. 1003-1015.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the natural linear representation of the group $\mathrm SL_4(\mathbb C)\times\mathrm SL_4(\mathbb C)\times\mathrm SL_2(\mathbb C)$ on the space $\mathbb C^4\otimes\mathbb C^4\otimes\mathbb C^2$. Using the embedding of this representation in the adjoint representation of the Lie algebra $E_7$, we classify the orbits and find the generators of the algebra of invariants.
@article{IM2_2000_64_5_a4,
     author = {D. D. Pervouchine},
     title = {Invariants and orbits of the standard $(\mathrm SL_4(\mathbb C)\times\mathrm SL_4(\mathbb C)\times\mathrm SL_2(\mathbb C))$-module},
     journal = {Izvestiya. Mathematics },
     pages = {1003--1015},
     publisher = {mathdoc},
     volume = {64},
     number = {5},
     year = {2000},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2000_64_5_a4/}
}
TY  - JOUR
AU  - D. D. Pervouchine
TI  - Invariants and orbits of the standard $(\mathrm SL_4(\mathbb C)\times\mathrm SL_4(\mathbb C)\times\mathrm SL_2(\mathbb C))$-module
JO  - Izvestiya. Mathematics 
PY  - 2000
SP  - 1003
EP  - 1015
VL  - 64
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2000_64_5_a4/
LA  - en
ID  - IM2_2000_64_5_a4
ER  - 
%0 Journal Article
%A D. D. Pervouchine
%T Invariants and orbits of the standard $(\mathrm SL_4(\mathbb C)\times\mathrm SL_4(\mathbb C)\times\mathrm SL_2(\mathbb C))$-module
%J Izvestiya. Mathematics 
%D 2000
%P 1003-1015
%V 64
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2000_64_5_a4/
%G en
%F IM2_2000_64_5_a4
D. D. Pervouchine. Invariants and orbits of the standard $(\mathrm SL_4(\mathbb C)\times\mathrm SL_4(\mathbb C)\times\mathrm SL_2(\mathbb C))$-module. Izvestiya. Mathematics , Tome 64 (2000) no. 5, pp. 1003-1015. http://geodesic.mathdoc.fr/item/IM2_2000_64_5_a4/

[1] Gantmacher F. R., The Theory of Matrices, Chelsea, N. Y., 1974

[2] Ja'ja J., “An addendum to Kronecker's theory of pencils”, SIAM J. Appl. Math., 37:3 (1979), 700–712 | DOI | MR | Zbl

[3] Kac V. G., “Some remarks on nilpotent orbits”, J. of Algebra, 64 (1980), 190–213 | DOI | MR | Zbl

[4] Vinberg E. B., “Gruppa Veilya graduirovannoi algebry Li”, Izv. AN SSSR. Ser. matem., 40:3 (1976), 488–526 | MR | Zbl

[5] Vinberg E. B., Popov V. L., “Teoriya invariantov”, Itogi nauki i tekhn. Sovrem. probl. matem. Fundam. napravl., 55, VINITI, M., 1989, 137–309 | MR

[6] Shephard G. S., Todd J. A., “Finite unitary reflection groups”, Canad. J. Math., 6:2 (1954), 274–301 | MR

[7] Vinberg E. B., Elashvili A. G., “Klassifikatsiya trivektorov 9-mernogo prostranstva”, Trudy seminara po vektornomu i tenzornomu analizu, Vyp. 18, no. 2, Izd-vo MGU, M., 1978, 197–233 | MR

[8] Dynkin E. B., “Poluprostye podalgebry poluprostykh algebr Li”, Matem. sb., 30:2 (1952), 349–462 | MR | Zbl