A~differential-geometrical criterion for quadratic Veronese embeddings
Izvestiya. Mathematics , Tome 64 (2000) no. 5, pp. 891-914.

Voir la notice de l'article provenant de la source Math-Net.Ru

We obtain a criterion for quadratic Veronese varieties. We prove that in the set of smooth $n$-dimensional submanifolds of the projective space $P^N$ of dimension $N=n(n+3)/2$ only the Veronese varieties have the following two properties: (i) the tangent projective spaces at any two points intersect in a point, (ii) the osculating projective space at every point coincides with the ambient space. This result is a generalization to arbitrary $n$ of the criterion for two-dimensional Veronese surfaces in $P^5$ proved by Griffiths and Harris. We also find a criterion for a pair of submanifolds of $P^N$ to be contained in the same Veronese variety. We obtain calculation formulae that enable one to use these criteria in practice.
@article{IM2_2000_64_5_a1,
     author = {V. V. Konnov},
     title = {A~differential-geometrical criterion for quadratic {Veronese} embeddings},
     journal = {Izvestiya. Mathematics },
     pages = {891--914},
     publisher = {mathdoc},
     volume = {64},
     number = {5},
     year = {2000},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2000_64_5_a1/}
}
TY  - JOUR
AU  - V. V. Konnov
TI  - A~differential-geometrical criterion for quadratic Veronese embeddings
JO  - Izvestiya. Mathematics 
PY  - 2000
SP  - 891
EP  - 914
VL  - 64
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2000_64_5_a1/
LA  - en
ID  - IM2_2000_64_5_a1
ER  - 
%0 Journal Article
%A V. V. Konnov
%T A~differential-geometrical criterion for quadratic Veronese embeddings
%J Izvestiya. Mathematics 
%D 2000
%P 891-914
%V 64
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2000_64_5_a1/
%G en
%F IM2_2000_64_5_a1
V. V. Konnov. A~differential-geometrical criterion for quadratic Veronese embeddings. Izvestiya. Mathematics , Tome 64 (2000) no. 5, pp. 891-914. http://geodesic.mathdoc.fr/item/IM2_2000_64_5_a1/

[1] Akivis M. A., Goldberg V. V., Projective differential geometry of submanifolds, North-Holland, Amsterdam–London–New York–Tokyo, 1993 | MR | Zbl

[2] Chern S. S., do Carmo M., Kobayashi S., “Minimal submanifolds on the sphere with second fundamental form of constant length”, Functional Analysis and Related Field, Proc. Conf. for M. Stone, III (Univ. Chicago, 1968), Springer-Verlage, New York, 1970, 59–75 | MR

[3] Griffiths P., “On Cartan's method of Lie groups and moving frames as applied to uniqueness and existence questions in differential geometry”, Duke Math. J., 41:4 (1974), 775–814 | DOI | MR | Zbl

[4] Griffiths P., Harris J., “Algebraic geometry and local differential geometry”, Ann. Sci. École Norm. Sup. 4 serie, 12 (1979), 355–452 | MR | Zbl

[5] Little J. A., Pohl W. F., “On tight immersions of maximal codimension”, Invent. Math., 11 (1971), 179–204 | DOI | MR

[6] Nomizu K., “A characterization of Veronese varieties”, Nogoya Math. J., 60 (1976), 181–188 | MR | Zbl

[7] Nomizu K., Yano K., “On circles and spheres in Riemannian geometry”, Math. Ann., 210 (1974), 163–170 | DOI | MR | Zbl

[8] Sasaki T., “On the Veronese embedding and related system of differential equations”, Global Differential Geometry and Global Analiysis, Lecture Note in Math., 1481, 1990, 210–293 | MR

[9] Konnov V. V., Differentsialnaya geometriya nekotorykh klassov algebraicheskikh mnogoobrazii, SamGPU, Samara, 1998 | Zbl