A~differential-geometrical criterion for quadratic Veronese embeddings
Izvestiya. Mathematics , Tome 64 (2000) no. 5, pp. 891-914

Voir la notice de l'article provenant de la source Math-Net.Ru

We obtain a criterion for quadratic Veronese varieties. We prove that in the set of smooth $n$-dimensional submanifolds of the projective space $P^N$ of dimension $N=n(n+3)/2$ only the Veronese varieties have the following two properties: (i) the tangent projective spaces at any two points intersect in a point, (ii) the osculating projective space at every point coincides with the ambient space. This result is a generalization to arbitrary $n$ of the criterion for two-dimensional Veronese surfaces in $P^5$ proved by Griffiths and Harris. We also find a criterion for a pair of submanifolds of $P^N$ to be contained in the same Veronese variety. We obtain calculation formulae that enable one to use these criteria in practice.
@article{IM2_2000_64_5_a1,
     author = {V. V. Konnov},
     title = {A~differential-geometrical criterion for quadratic {Veronese} embeddings},
     journal = {Izvestiya. Mathematics },
     pages = {891--914},
     publisher = {mathdoc},
     volume = {64},
     number = {5},
     year = {2000},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2000_64_5_a1/}
}
TY  - JOUR
AU  - V. V. Konnov
TI  - A~differential-geometrical criterion for quadratic Veronese embeddings
JO  - Izvestiya. Mathematics 
PY  - 2000
SP  - 891
EP  - 914
VL  - 64
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2000_64_5_a1/
LA  - en
ID  - IM2_2000_64_5_a1
ER  - 
%0 Journal Article
%A V. V. Konnov
%T A~differential-geometrical criterion for quadratic Veronese embeddings
%J Izvestiya. Mathematics 
%D 2000
%P 891-914
%V 64
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2000_64_5_a1/
%G en
%F IM2_2000_64_5_a1
V. V. Konnov. A~differential-geometrical criterion for quadratic Veronese embeddings. Izvestiya. Mathematics , Tome 64 (2000) no. 5, pp. 891-914. http://geodesic.mathdoc.fr/item/IM2_2000_64_5_a1/