The structure of the set of cube-free $Z$-words in a~two-letter alphabet
Izvestiya. Mathematics , Tome 64 (2000) no. 4, pp. 847-871

Voir la notice de l'article provenant de la source Math-Net.Ru

The object of our study is the set of $Z$-words, that is, (bi)infinite sequences of alphabetic symbols indexed by integers. We consider an ordered family of subsets of the set of all the cube-free $Z$-words in a two-letter alphabet. The construction of this family is based on the notion of the local exponent of a $Z$-word. The problem of existence of cube-free $Z$-words which are $Z$-words of local exponent 2 (the minimum possible) is described. An important distinction is drawn between strongly cube-free $Z$-words and $Z$-words of greater local exponent.
@article{IM2_2000_64_4_a7,
     author = {A. M. Shur},
     title = {The structure of the set of cube-free $Z$-words in a~two-letter alphabet},
     journal = {Izvestiya. Mathematics },
     pages = {847--871},
     publisher = {mathdoc},
     volume = {64},
     number = {4},
     year = {2000},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2000_64_4_a7/}
}
TY  - JOUR
AU  - A. M. Shur
TI  - The structure of the set of cube-free $Z$-words in a~two-letter alphabet
JO  - Izvestiya. Mathematics 
PY  - 2000
SP  - 847
EP  - 871
VL  - 64
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2000_64_4_a7/
LA  - en
ID  - IM2_2000_64_4_a7
ER  - 
%0 Journal Article
%A A. M. Shur
%T The structure of the set of cube-free $Z$-words in a~two-letter alphabet
%J Izvestiya. Mathematics 
%D 2000
%P 847-871
%V 64
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2000_64_4_a7/
%G en
%F IM2_2000_64_4_a7
A. M. Shur. The structure of the set of cube-free $Z$-words in a~two-letter alphabet. Izvestiya. Mathematics , Tome 64 (2000) no. 4, pp. 847-871. http://geodesic.mathdoc.fr/item/IM2_2000_64_4_a7/