The structure of the set of cube-free $Z$-words in a~two-letter alphabet
Izvestiya. Mathematics , Tome 64 (2000) no. 4, pp. 847-871.

Voir la notice de l'article provenant de la source Math-Net.Ru

The object of our study is the set of $Z$-words, that is, (bi)infinite sequences of alphabetic symbols indexed by integers. We consider an ordered family of subsets of the set of all the cube-free $Z$-words in a two-letter alphabet. The construction of this family is based on the notion of the local exponent of a $Z$-word. The problem of existence of cube-free $Z$-words which are $Z$-words of local exponent 2 (the minimum possible) is described. An important distinction is drawn between strongly cube-free $Z$-words and $Z$-words of greater local exponent.
@article{IM2_2000_64_4_a7,
     author = {A. M. Shur},
     title = {The structure of the set of cube-free $Z$-words in a~two-letter alphabet},
     journal = {Izvestiya. Mathematics },
     pages = {847--871},
     publisher = {mathdoc},
     volume = {64},
     number = {4},
     year = {2000},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2000_64_4_a7/}
}
TY  - JOUR
AU  - A. M. Shur
TI  - The structure of the set of cube-free $Z$-words in a~two-letter alphabet
JO  - Izvestiya. Mathematics 
PY  - 2000
SP  - 847
EP  - 871
VL  - 64
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2000_64_4_a7/
LA  - en
ID  - IM2_2000_64_4_a7
ER  - 
%0 Journal Article
%A A. M. Shur
%T The structure of the set of cube-free $Z$-words in a~two-letter alphabet
%J Izvestiya. Mathematics 
%D 2000
%P 847-871
%V 64
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2000_64_4_a7/
%G en
%F IM2_2000_64_4_a7
A. M. Shur. The structure of the set of cube-free $Z$-words in a~two-letter alphabet. Izvestiya. Mathematics , Tome 64 (2000) no. 4, pp. 847-871. http://geodesic.mathdoc.fr/item/IM2_2000_64_4_a7/

[1] Thue A., “Über die gegenseitige Lage gleicher Teile gewisser Zeichenreihen”, Skr. Vid. Kristiania I. Mat. Naturv. Klasse, I (1912), 1–67

[2] Arshon S. E., “Dokazatelstvo suschestvovaniya $n$-znachnykh beskonechnykh asimmetrichnykh posledovatelnostei”, Matem. sb., 2(44):4 (1937), 769–779 | Zbl

[3] Morse M., Hedlund G. A., “Symbolic dynamics”, Amer. J. Math., 60 (1938), 815–866 | DOI | MR | Zbl

[4] Perrin D., Pin J.-E., “Semigroups and automata on infinite words”, Semigroups, Formal languages and Groups, Kluwer Acad. Publ., Holland, 1995, 49–72 | MR | Zbl

[5] Gottschalk W. H., Hedlund G. A., “Topological dynamics”, Amer. Math. Soc. Colloq. Publ., 1955 | MR | Zbl

[6] Branderburg F.-J., “Uniformly growing $k$-th power free homomorphisms”, Theor. Comput. Sci., 23 (1983), 69–82 | DOI | MR

[7] Kobayashi Y., “Enumeration of irreducible binary words”, Discr. Appl. Math., 20 (1988), 221–232 | DOI | MR | Zbl

[8] Gottschalk W. H., Hedlund G. A., “A characterization of the Morse minimal set”, Proc. of Amer. Math. Soc., 15 (1964), 70–74 | DOI | MR | Zbl

[9] Crochemore M., Goralčik P., “Mutually avoidable ternary words of small exponent”, Int. J. Alg. and Comp., 1 (1991), 407–410 | DOI | MR | Zbl

[10] Shur A. M., “Overlap-free words and Thue–Morse sequences”, Int. J. Alg. and Comp., 6 (1996), 353–367 | DOI | MR | Zbl

[11] Jezek J., “Intervals in the lattice of varieties”, Algebra Universalis, 6 (1976), 147–158 | DOI | MR | Zbl

[12] Shur A. M., “Binary words avoided by the Thue–Morse sequence”, Semigroup Forum, 53 (1996), 212–219 | DOI | MR | Zbl