Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_2000_64_4_a5, author = {A. A. Tolstonogov}, title = {A~theorem of existence of an optimal control for the {Goursat--Darboux} problem without convexity assumptions}, journal = {Izvestiya. Mathematics }, pages = {807--826}, publisher = {mathdoc}, volume = {64}, number = {4}, year = {2000}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_2000_64_4_a5/} }
TY - JOUR AU - A. A. Tolstonogov TI - A~theorem of existence of an optimal control for the Goursat--Darboux problem without convexity assumptions JO - Izvestiya. Mathematics PY - 2000 SP - 807 EP - 826 VL - 64 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IM2_2000_64_4_a5/ LA - en ID - IM2_2000_64_4_a5 ER -
A. A. Tolstonogov. A~theorem of existence of an optimal control for the Goursat--Darboux problem without convexity assumptions. Izvestiya. Mathematics , Tome 64 (2000) no. 4, pp. 807-826. http://geodesic.mathdoc.fr/item/IM2_2000_64_4_a5/
[1] Ekland I. R., Temam R., Vypuklyi analiz i variatsionnye problemy, Mir, M., 1979 | MR
[2] Raymond J. P., “Existence theorems in optimal control problems without convexity assumptions”, J. Optimiz. Theory and Appl., 67:1 (1990), 109–132 | DOI | MR | Zbl
[3] Raymond J. P, “Existence theorems without convexity assumptions for optimal control problems governed by parabolic and elliptic systems”, Appl. Math. Optim., 26 (1992), 39–62 | DOI | MR | Zbl
[4] Balder Eric J., “New existence results for optimal controls in the absence of convexity: the importance of extremality”, SIAM J. Control and Optimiz., 32:3 (1994), 890–916 | DOI | MR | Zbl
[5] Bressan A., Flores F., “Multivariable Aumann integrals and controlled wave equation”, J. Math. Anal. and Appl., 189:2 (1995), 315–334 | DOI | MR | Zbl
[6] Colombo G., Goncharov V. V., “Existence for a nonconvex optimal control problem with nonlinear dynamics”, Nonlinear Anal. Theory. Meth. Appl., 24:6 (1995), 795–800 | DOI | MR | Zbl
[7] Colombo G., Goncharov V. V., Ramazzina E., “On a class of nonconvex and nonlinear optimal control problems”, No DEA, 3 (1996), 115–126 | MR
[8] Bressan A., Piccoli B., “A Baire category approach to the bang-bang property”, J. Diff. Equat., 116:2 (1995), 318–337 | DOI | MR | Zbl
[9] Tolstonogov D. A., “O minimume v variatsionnykh ellipticheskikh zadachakh bez predpolozheniya vypuklosti”, Matem. zametki, 65:1 (1999), 130–142 | MR | Zbl
[10] Kisynski J., “Solution generalisees du probleme de Cauchy–Darboux pour l'equation $\partial^2z/\partial x\partial y= f(x,y,z,\partial z/\partial x,\partial z/\partial y)$”, Ann. Univ. M. Curie-Sklodowska. Sect. A, 14:6 (1960), 87–109 | MR | Zbl
[11] Marano S. A., “Generalized solutions of partial differential inclussions depending on a parameter”, Rend. Accad. Naz. Sci. XL Mem. Mat., 3 (1989), 281–295 | MR
[12] Tolstonogov A. A., “Continuous selectors of fixed points sets of multifunctions with decomposable values”, Set-valued Anal., 6 (1998), 129–147 | DOI | MR | Zbl
[13] Tolstonogov A. A., “K teoreme Skortsa–Dragoni dlya mnogoznachnykh otobrazhenii s peremennoi oblastyu opredeleniya”, Matem. zametki, 48:5 (1990), 109–120 | MR | Zbl
[14] Himmelberg C. J., “Measurable relations”, Fundamenta Math., 87 (1975), 53–72 | MR | Zbl
[15] Ioffe A. D., Tikhomirov V. M., Teoriya ekstremalnykh zadach, Nauka, M., 1974 | MR | Zbl
[16] Cellina A., Colombo G., “On a classical problem of the calculus of variations without convexity assumptions”, Ann. Inst. H. Poincare Analyse non lineare, 1990, no. 7, 97–106 | MR | Zbl
[17] Cesari L., “An existence theorem without convexity condition”, SIAM J. Control, 12:2 (1974), 319–331 | DOI | MR | Zbl
[18] Suryanarayan M. B., “Existence theorems for optimization problems concerning linear, hyperbolic partial differential equations without convexity conditions”, J. Optimiz. Theory and Appl., 19:1 (1976), 47–61 | DOI | MR | Zbl
[19] Bressan A., “A multidemensional Lyapunov type theorem”, Studia Math., 106:2 (1993), 121–128 | MR | Zbl