A~theorem of existence of an optimal control for the Goursat--Darboux problem without convexity assumptions
Izvestiya. Mathematics , Tome 64 (2000) no. 4, pp. 807-826.

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove a theorem on the existence of solutions of the minimization problem for the integral functional on solutions of the controlled system described by the Goursat–Darboux equation, which is linear with respect to the phase variables and their derivatives, with constraints on the control, the phase variables, and their first partial derivatives. The system is controlled by means of boundary and distributed controls. We do not assume that the functional to be minimized is convex with respect to the controls. The sets of admissible controls and the constraints on the phase variables and their first partial derivatives also are non-convex.
@article{IM2_2000_64_4_a5,
     author = {A. A. Tolstonogov},
     title = {A~theorem of existence of an optimal control for the {Goursat--Darboux} problem without convexity assumptions},
     journal = {Izvestiya. Mathematics },
     pages = {807--826},
     publisher = {mathdoc},
     volume = {64},
     number = {4},
     year = {2000},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2000_64_4_a5/}
}
TY  - JOUR
AU  - A. A. Tolstonogov
TI  - A~theorem of existence of an optimal control for the Goursat--Darboux problem without convexity assumptions
JO  - Izvestiya. Mathematics 
PY  - 2000
SP  - 807
EP  - 826
VL  - 64
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2000_64_4_a5/
LA  - en
ID  - IM2_2000_64_4_a5
ER  - 
%0 Journal Article
%A A. A. Tolstonogov
%T A~theorem of existence of an optimal control for the Goursat--Darboux problem without convexity assumptions
%J Izvestiya. Mathematics 
%D 2000
%P 807-826
%V 64
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2000_64_4_a5/
%G en
%F IM2_2000_64_4_a5
A. A. Tolstonogov. A~theorem of existence of an optimal control for the Goursat--Darboux problem without convexity assumptions. Izvestiya. Mathematics , Tome 64 (2000) no. 4, pp. 807-826. http://geodesic.mathdoc.fr/item/IM2_2000_64_4_a5/

[1] Ekland I. R., Temam R., Vypuklyi analiz i variatsionnye problemy, Mir, M., 1979 | MR

[2] Raymond J. P., “Existence theorems in optimal control problems without convexity assumptions”, J. Optimiz. Theory and Appl., 67:1 (1990), 109–132 | DOI | MR | Zbl

[3] Raymond J. P, “Existence theorems without convexity assumptions for optimal control problems governed by parabolic and elliptic systems”, Appl. Math. Optim., 26 (1992), 39–62 | DOI | MR | Zbl

[4] Balder Eric J., “New existence results for optimal controls in the absence of convexity: the importance of extremality”, SIAM J. Control and Optimiz., 32:3 (1994), 890–916 | DOI | MR | Zbl

[5] Bressan A., Flores F., “Multivariable Aumann integrals and controlled wave equation”, J. Math. Anal. and Appl., 189:2 (1995), 315–334 | DOI | MR | Zbl

[6] Colombo G., Goncharov V. V., “Existence for a nonconvex optimal control problem with nonlinear dynamics”, Nonlinear Anal. Theory. Meth. Appl., 24:6 (1995), 795–800 | DOI | MR | Zbl

[7] Colombo G., Goncharov V. V., Ramazzina E., “On a class of nonconvex and nonlinear optimal control problems”, No DEA, 3 (1996), 115–126 | MR

[8] Bressan A., Piccoli B., “A Baire category approach to the bang-bang property”, J. Diff. Equat., 116:2 (1995), 318–337 | DOI | MR | Zbl

[9] Tolstonogov D. A., “O minimume v variatsionnykh ellipticheskikh zadachakh bez predpolozheniya vypuklosti”, Matem. zametki, 65:1 (1999), 130–142 | MR | Zbl

[10] Kisynski J., “Solution generalisees du probleme de Cauchy–Darboux pour l'equation $\partial^2z/\partial x\partial y= f(x,y,z,\partial z/\partial x,\partial z/\partial y)$”, Ann. Univ. M. Curie-Sklodowska. Sect. A, 14:6 (1960), 87–109 | MR | Zbl

[11] Marano S. A., “Generalized solutions of partial differential inclussions depending on a parameter”, Rend. Accad. Naz. Sci. XL Mem. Mat., 3 (1989), 281–295 | MR

[12] Tolstonogov A. A., “Continuous selectors of fixed points sets of multifunctions with decomposable values”, Set-valued Anal., 6 (1998), 129–147 | DOI | MR | Zbl

[13] Tolstonogov A. A., “K teoreme Skortsa–Dragoni dlya mnogoznachnykh otobrazhenii s peremennoi oblastyu opredeleniya”, Matem. zametki, 48:5 (1990), 109–120 | MR | Zbl

[14] Himmelberg C. J., “Measurable relations”, Fundamenta Math., 87 (1975), 53–72 | MR | Zbl

[15] Ioffe A. D., Tikhomirov V. M., Teoriya ekstremalnykh zadach, Nauka, M., 1974 | MR | Zbl

[16] Cellina A., Colombo G., “On a classical problem of the calculus of variations without convexity assumptions”, Ann. Inst. H. Poincare Analyse non lineare, 1990, no. 7, 97–106 | MR | Zbl

[17] Cesari L., “An existence theorem without convexity condition”, SIAM J. Control, 12:2 (1974), 319–331 | DOI | MR | Zbl

[18] Suryanarayan M. B., “Existence theorems for optimization problems concerning linear, hyperbolic partial differential equations without convexity conditions”, J. Optimiz. Theory and Appl., 19:1 (1976), 47–61 | DOI | MR | Zbl

[19] Bressan A., “A multidemensional Lyapunov type theorem”, Studia Math., 106:2 (1993), 121–128 | MR | Zbl