Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_2000_64_4_a4, author = {S. G. Tankeev}, title = {On the {Brauer} group}, journal = {Izvestiya. Mathematics }, pages = {787--806}, publisher = {mathdoc}, volume = {64}, number = {4}, year = {2000}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_2000_64_4_a4/} }
S. G. Tankeev. On the Brauer group. Izvestiya. Mathematics , Tome 64 (2000) no. 4, pp. 787-806. http://geodesic.mathdoc.fr/item/IM2_2000_64_4_a4/
[1] André Y., “On the Shafarevich and Tate conjectures for hyperkähler varieties”, Math. Ann., 305 (1996), 205–248 | DOI | MR | Zbl
[2] Beauville A., “Variétés kähleriennes dont la première classe de Chern est nulle”, J. Diff. Geom., 18 (1983), 755–782 | MR | Zbl
[3] Beauville A., Donagi R., “The variety of lines of a cubic fourfold”, C.R.A.S. Paris, Serie I, 301 (1985), 703–706 | MR | Zbl
[4] Cassels J. W. S., “Diophantine equations with special reference to elliptic curves. Survey article”, J. London Math. Soc., 41 (1966), 193–291 | DOI | MR
[5] Kassels Dzh., Frelikh A., Algebraicheskaya teoriya chisel, Mir, M., 1969
[6] Colliot-Thélène J.-L., Skorobogatov A. N., Swinnerton-Dyer P., “Hasse principle for pensils of curves of genus one whose Jacobians have rational $2$-division points”, Invent. Math., 134:3 (1998), 579–650 | DOI | MR | Zbl
[7] Faltings G., “Endlichkeitssätze für abelsche Varietäten über Zahlkörpern”, Invent. Math., 73:3 (1983), 349–366 | DOI | MR | Zbl
[8] Faltings G., “$p$-adic Hodge theory”, J. Amer. Math. Soc., 1:1 (1988), 255–299 | DOI | MR | Zbl
[9] Godeman R., Algebraicheskaya topologiya i teoriya puchkov, IL, M., 1961
[10] Gordon B. B., “Algebraic cycles and the Hodge structure of a Kuga fiber variety”, Transactions of the Amer. Math. Soc., 336:2 (1993), 933–947 | DOI | MR | Zbl
[11] Grothendieck A., “Le groupe de Brauer, II”, Séminaire Bourbaki, Exposé 297, 1965/66, 1–21
[12] Grothendieck A., “Eléments de géométrie algébrique. IV: Étude locale des schémas et des morphismes des schémas”, Publ. Math. IHES, 32 (1967) | Zbl
[13] Khartskhorn R., Algebraicheskaya geometriya, Mir, M., 1981 | MR | Zbl
[14] Kempf G., “Toroidal embeddings, I”, Lecture Notes in Math., 339, Springer-Verlag, 1973 | MR | Zbl
[15] Miln Dzh., Etalnye kogomologii, Mir, M., 1983 | MR | Zbl
[16] Milne J. S., Arithmetic duality theorems, Academic Press Inc., 1986 | MR
[17] Mukai S., “Simplectic structure on the moduli space of sheaves on an abelian or $\operatorname{K3}$ surface”, Invent. Math., 77 (1984), 101–116 | DOI | MR | Zbl
[18] Mamford D., Lektsii o krivykh na algebraicheskoi poverkhnosti, Mir, M., 1968
[19] Serre J.-P., Tate J., “Good reduction of abelian varieties”, Ann. Math. (2), 88 (1968), 492–517 | DOI | MR | Zbl
[20] Shioda T., “On elliptic modular surfaces”, J. Math. Soc. Japan, 24 (1972), 20–59 | MR | Zbl
[21] Shioda T., Katsura T., “On Fermat varieties”, Tohoku Math. J., 31 (1979), 97–115 | DOI | MR | Zbl
[22] Shioda T., “The Hodge conjecture for Fermat varieties”, Math. Ann., 245 (1979), 175–184 | DOI | MR | Zbl
[23] Tankeev S. G., “Ob algebraicheskikh tsiklakh na poverkhnostyakh i abelevykh mnogoobraziyakh”, Izv. AN SSSR. Ser. matem., 45:2 (1981), 398–434 | MR | Zbl
[24] Tankeev S. G., “Poverkhnosti tipa $\operatorname{K3}$ nad chislovymi polyami i $l$-adicheskie predstavleniya”, Izv. AN SSSR. Ser. matem., 52:6 (1988), 1252–1271 | MR
[25] Tate J., “Algebraic cycles and poles of zeta functions”, Arithmetical Algebraic Geometry, Harper and Row, N.-Y., 1965, 93–110 | MR
[26] Tate J., “Endomorphisms of abelian varieties over finite fields”, Invent. Math., 2 (1966), 134–144 | DOI | MR | Zbl
[27] Tate J., “On the conjectures of Birch and Swinnerton-Dyer and a geometric analog”, Séminaire Bourbaki, Exposé 306, 1965/66, 1–26
[28] Zarhin Yu. G., “Hodge group of $\operatorname{K3}$ surface”, J. für die reine und angew. Math., 341 (1983), 193–220 | MR