On the Brauer group
Izvestiya. Mathematics , Tome 64 (2000) no. 4, pp. 787-806
Voir la notice de l'article provenant de la source Math-Net.Ru
For an arithmetic model $X$ of a Fermat surface or a hyperkahler variety with Betti number $\operatorname{b}_2(V\otimes\bar k)>3$ over a purely imaginary number field $k$, we prove the finiteness of the $l$-components of $\operatorname{Br}'(X)$ for all primes $l\gg 0$. This yields a variant of a conjecture of M. Artin.
If $V$ is a smooth projective irregular surface over a number field $k$ and $V(k)\ne\varnothing$, then the $l$-primary component of $\operatorname{Br}(V)/{\operatorname{Br}(k)}$ is an infinite group for every prime $l$. Let $A^1\to M^1$ be the universal family of elliptic curves with a Jacobian structure of level $N\geqslant 3$ over a number field $k\supset\mathbb Q(e^{2\pi i/N})$. Assume that $M^1(k)\ne\varnothing$. If $V$ is a smooth projective compactification of the surface $A^1$, then the $l$-primary component of $\operatorname{Br}(V)/{\operatorname{Br}(\overline M^1)}$ is a finite group for each sufficiently large prime $l$.
@article{IM2_2000_64_4_a4,
author = {S. G. Tankeev},
title = {On the {Brauer} group},
journal = {Izvestiya. Mathematics },
pages = {787--806},
publisher = {mathdoc},
volume = {64},
number = {4},
year = {2000},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_2000_64_4_a4/}
}
S. G. Tankeev. On the Brauer group. Izvestiya. Mathematics , Tome 64 (2000) no. 4, pp. 787-806. http://geodesic.mathdoc.fr/item/IM2_2000_64_4_a4/