On the Brauer group
Izvestiya. Mathematics , Tome 64 (2000) no. 4, pp. 787-806.

Voir la notice de l'article provenant de la source Math-Net.Ru

For an arithmetic model $X$ of a Fermat surface or a hyperkahler variety with Betti number $\operatorname{b}_2(V\otimes\bar k)>3$ over a purely imaginary number field $k$, we prove the finiteness of the $l$-components of $\operatorname{Br}'(X)$ for all primes $l\gg 0$. This yields a variant of a conjecture of M. Artin. If $V$ is a smooth projective irregular surface over a number field $k$ and $V(k)\ne\varnothing$, then the $l$-primary component of $\operatorname{Br}(V)/{\operatorname{Br}(k)}$ is an infinite group for every prime $l$. Let $A^1\to M^1$ be the universal family of elliptic curves with a Jacobian structure of level $N\geqslant 3$ over a number field $k\supset\mathbb Q(e^{2\pi i/N})$. Assume that $M^1(k)\ne\varnothing$. If $V$ is a smooth projective compactification of the surface $A^1$, then the $l$-primary component of $\operatorname{Br}(V)/{\operatorname{Br}(\overline M^1)}$ is a finite group for each sufficiently large prime $l$.
@article{IM2_2000_64_4_a4,
     author = {S. G. Tankeev},
     title = {On the {Brauer} group},
     journal = {Izvestiya. Mathematics },
     pages = {787--806},
     publisher = {mathdoc},
     volume = {64},
     number = {4},
     year = {2000},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2000_64_4_a4/}
}
TY  - JOUR
AU  - S. G. Tankeev
TI  - On the Brauer group
JO  - Izvestiya. Mathematics 
PY  - 2000
SP  - 787
EP  - 806
VL  - 64
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2000_64_4_a4/
LA  - en
ID  - IM2_2000_64_4_a4
ER  - 
%0 Journal Article
%A S. G. Tankeev
%T On the Brauer group
%J Izvestiya. Mathematics 
%D 2000
%P 787-806
%V 64
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2000_64_4_a4/
%G en
%F IM2_2000_64_4_a4
S. G. Tankeev. On the Brauer group. Izvestiya. Mathematics , Tome 64 (2000) no. 4, pp. 787-806. http://geodesic.mathdoc.fr/item/IM2_2000_64_4_a4/

[1] André Y., “On the Shafarevich and Tate conjectures for hyperkähler varieties”, Math. Ann., 305 (1996), 205–248 | DOI | MR | Zbl

[2] Beauville A., “Variétés kähleriennes dont la première classe de Chern est nulle”, J. Diff. Geom., 18 (1983), 755–782 | MR | Zbl

[3] Beauville A., Donagi R., “The variety of lines of a cubic fourfold”, C.R.A.S. Paris, Serie I, 301 (1985), 703–706 | MR | Zbl

[4] Cassels J. W. S., “Diophantine equations with special reference to elliptic curves. Survey article”, J. London Math. Soc., 41 (1966), 193–291 | DOI | MR

[5] Kassels Dzh., Frelikh A., Algebraicheskaya teoriya chisel, Mir, M., 1969

[6] Colliot-Thélène J.-L., Skorobogatov A. N., Swinnerton-Dyer P., “Hasse principle for pensils of curves of genus one whose Jacobians have rational $2$-division points”, Invent. Math., 134:3 (1998), 579–650 | DOI | MR | Zbl

[7] Faltings G., “Endlichkeitssätze für abelsche Varietäten über Zahlkörpern”, Invent. Math., 73:3 (1983), 349–366 | DOI | MR | Zbl

[8] Faltings G., “$p$-adic Hodge theory”, J. Amer. Math. Soc., 1:1 (1988), 255–299 | DOI | MR | Zbl

[9] Godeman R., Algebraicheskaya topologiya i teoriya puchkov, IL, M., 1961

[10] Gordon B. B., “Algebraic cycles and the Hodge structure of a Kuga fiber variety”, Transactions of the Amer. Math. Soc., 336:2 (1993), 933–947 | DOI | MR | Zbl

[11] Grothendieck A., “Le groupe de Brauer, II”, Séminaire Bourbaki, Exposé 297, 1965/66, 1–21

[12] Grothendieck A., “Eléments de géométrie algébrique. IV: Étude locale des schémas et des morphismes des schémas”, Publ. Math. IHES, 32 (1967) | Zbl

[13] Khartskhorn R., Algebraicheskaya geometriya, Mir, M., 1981 | MR | Zbl

[14] Kempf G., “Toroidal embeddings, I”, Lecture Notes in Math., 339, Springer-Verlag, 1973 | MR | Zbl

[15] Miln Dzh., Etalnye kogomologii, Mir, M., 1983 | MR | Zbl

[16] Milne J. S., Arithmetic duality theorems, Academic Press Inc., 1986 | MR

[17] Mukai S., “Simplectic structure on the moduli space of sheaves on an abelian or $\operatorname{K3}$ surface”, Invent. Math., 77 (1984), 101–116 | DOI | MR | Zbl

[18] Mamford D., Lektsii o krivykh na algebraicheskoi poverkhnosti, Mir, M., 1968

[19] Serre J.-P., Tate J., “Good reduction of abelian varieties”, Ann. Math. (2), 88 (1968), 492–517 | DOI | MR | Zbl

[20] Shioda T., “On elliptic modular surfaces”, J. Math. Soc. Japan, 24 (1972), 20–59 | MR | Zbl

[21] Shioda T., Katsura T., “On Fermat varieties”, Tohoku Math. J., 31 (1979), 97–115 | DOI | MR | Zbl

[22] Shioda T., “The Hodge conjecture for Fermat varieties”, Math. Ann., 245 (1979), 175–184 | DOI | MR | Zbl

[23] Tankeev S. G., “Ob algebraicheskikh tsiklakh na poverkhnostyakh i abelevykh mnogoobraziyakh”, Izv. AN SSSR. Ser. matem., 45:2 (1981), 398–434 | MR | Zbl

[24] Tankeev S. G., “Poverkhnosti tipa $\operatorname{K3}$ nad chislovymi polyami i $l$-adicheskie predstavleniya”, Izv. AN SSSR. Ser. matem., 52:6 (1988), 1252–1271 | MR

[25] Tate J., “Algebraic cycles and poles of zeta functions”, Arithmetical Algebraic Geometry, Harper and Row, N.-Y., 1965, 93–110 | MR

[26] Tate J., “Endomorphisms of abelian varieties over finite fields”, Invent. Math., 2 (1966), 134–144 | DOI | MR | Zbl

[27] Tate J., “On the conjectures of Birch and Swinnerton-Dyer and a geometric analog”, Séminaire Bourbaki, Exposé 306, 1965/66, 1–26

[28] Zarhin Yu. G., “Hodge group of $\operatorname{K3}$ surface”, J. für die reine und angew. Math., 341 (1983), 193–220 | MR