On the Brauer group
Izvestiya. Mathematics , Tome 64 (2000) no. 4, pp. 787-806

Voir la notice de l'article provenant de la source Math-Net.Ru

For an arithmetic model $X$ of a Fermat surface or a hyperkahler variety with Betti number $\operatorname{b}_2(V\otimes\bar k)>3$ over a purely imaginary number field $k$, we prove the finiteness of the $l$-components of $\operatorname{Br}'(X)$ for all primes $l\gg 0$. This yields a variant of a conjecture of M. Artin. If $V$ is a smooth projective irregular surface over a number field $k$ and $V(k)\ne\varnothing$, then the $l$-primary component of $\operatorname{Br}(V)/{\operatorname{Br}(k)}$ is an infinite group for every prime $l$. Let $A^1\to M^1$ be the universal family of elliptic curves with a Jacobian structure of level $N\geqslant 3$ over a number field $k\supset\mathbb Q(e^{2\pi i/N})$. Assume that $M^1(k)\ne\varnothing$. If $V$ is a smooth projective compactification of the surface $A^1$, then the $l$-primary component of $\operatorname{Br}(V)/{\operatorname{Br}(\overline M^1)}$ is a finite group for each sufficiently large prime $l$.
@article{IM2_2000_64_4_a4,
     author = {S. G. Tankeev},
     title = {On the {Brauer} group},
     journal = {Izvestiya. Mathematics },
     pages = {787--806},
     publisher = {mathdoc},
     volume = {64},
     number = {4},
     year = {2000},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2000_64_4_a4/}
}
TY  - JOUR
AU  - S. G. Tankeev
TI  - On the Brauer group
JO  - Izvestiya. Mathematics 
PY  - 2000
SP  - 787
EP  - 806
VL  - 64
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2000_64_4_a4/
LA  - en
ID  - IM2_2000_64_4_a4
ER  - 
%0 Journal Article
%A S. G. Tankeev
%T On the Brauer group
%J Izvestiya. Mathematics 
%D 2000
%P 787-806
%V 64
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2000_64_4_a4/
%G en
%F IM2_2000_64_4_a4
S. G. Tankeev. On the Brauer group. Izvestiya. Mathematics , Tome 64 (2000) no. 4, pp. 787-806. http://geodesic.mathdoc.fr/item/IM2_2000_64_4_a4/