On the summability and convergence of non-harmonic Fourier series
Izvestiya. Mathematics , Tome 64 (2000) no. 3, pp. 583-600
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider systems of exponentials that are orthogonal to measures $d\sigma$ of a special form on $(-a,a)$. Under certain conditions on the summation method, these systems form summation bases $L^p(-a,a)$ and in $C_0$ (the subspace of $C[-a,a]$ orthogonal
to $d\sigma$). With respect to these systems, Lipschitzian functions in $C_0$ are expanded into non-harmonic Fourier series that converge uniformly on $[-a,a]$.
@article{IM2_2000_64_3_a4,
author = {A. M. Sedletskii},
title = {On the summability and convergence of non-harmonic {Fourier} series},
journal = {Izvestiya. Mathematics },
pages = {583--600},
publisher = {mathdoc},
volume = {64},
number = {3},
year = {2000},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_2000_64_3_a4/}
}
A. M. Sedletskii. On the summability and convergence of non-harmonic Fourier series. Izvestiya. Mathematics , Tome 64 (2000) no. 3, pp. 583-600. http://geodesic.mathdoc.fr/item/IM2_2000_64_3_a4/