On the summability and convergence of non-harmonic Fourier series
Izvestiya. Mathematics , Tome 64 (2000) no. 3, pp. 583-600

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider systems of exponentials that are orthogonal to measures $d\sigma$ of a special form on $(-a,a)$. Under certain conditions on the summation method, these systems form summation bases $L^p(-a,a)$ and in $C_0$ (the subspace of $C[-a,a]$ orthogonal to $d\sigma$). With respect to these systems, Lipschitzian functions in $C_0$ are expanded into non-harmonic Fourier series that converge uniformly on $[-a,a]$.
@article{IM2_2000_64_3_a4,
     author = {A. M. Sedletskii},
     title = {On the summability and convergence of non-harmonic {Fourier} series},
     journal = {Izvestiya. Mathematics },
     pages = {583--600},
     publisher = {mathdoc},
     volume = {64},
     number = {3},
     year = {2000},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2000_64_3_a4/}
}
TY  - JOUR
AU  - A. M. Sedletskii
TI  - On the summability and convergence of non-harmonic Fourier series
JO  - Izvestiya. Mathematics 
PY  - 2000
SP  - 583
EP  - 600
VL  - 64
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2000_64_3_a4/
LA  - en
ID  - IM2_2000_64_3_a4
ER  - 
%0 Journal Article
%A A. M. Sedletskii
%T On the summability and convergence of non-harmonic Fourier series
%J Izvestiya. Mathematics 
%D 2000
%P 583-600
%V 64
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2000_64_3_a4/
%G en
%F IM2_2000_64_3_a4
A. M. Sedletskii. On the summability and convergence of non-harmonic Fourier series. Izvestiya. Mathematics , Tome 64 (2000) no. 3, pp. 583-600. http://geodesic.mathdoc.fr/item/IM2_2000_64_3_a4/