On the summability and convergence of non-harmonic Fourier series
Izvestiya. Mathematics , Tome 64 (2000) no. 3, pp. 583-600.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider systems of exponentials that are orthogonal to measures $d\sigma$ of a special form on $(-a,a)$. Under certain conditions on the summation method, these systems form summation bases $L^p(-a,a)$ and in $C_0$ (the subspace of $C[-a,a]$ orthogonal to $d\sigma$). With respect to these systems, Lipschitzian functions in $C_0$ are expanded into non-harmonic Fourier series that converge uniformly on $[-a,a]$.
@article{IM2_2000_64_3_a4,
     author = {A. M. Sedletskii},
     title = {On the summability and convergence of non-harmonic {Fourier} series},
     journal = {Izvestiya. Mathematics },
     pages = {583--600},
     publisher = {mathdoc},
     volume = {64},
     number = {3},
     year = {2000},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2000_64_3_a4/}
}
TY  - JOUR
AU  - A. M. Sedletskii
TI  - On the summability and convergence of non-harmonic Fourier series
JO  - Izvestiya. Mathematics 
PY  - 2000
SP  - 583
EP  - 600
VL  - 64
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2000_64_3_a4/
LA  - en
ID  - IM2_2000_64_3_a4
ER  - 
%0 Journal Article
%A A. M. Sedletskii
%T On the summability and convergence of non-harmonic Fourier series
%J Izvestiya. Mathematics 
%D 2000
%P 583-600
%V 64
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2000_64_3_a4/
%G en
%F IM2_2000_64_3_a4
A. M. Sedletskii. On the summability and convergence of non-harmonic Fourier series. Izvestiya. Mathematics , Tome 64 (2000) no. 3, pp. 583-600. http://geodesic.mathdoc.fr/item/IM2_2000_64_3_a4/

[1] Viner N., Peli R., Preobrazovanie Fure v kompleksnoi oblasti, Nauka, M., 1964 | MR

[2] Levinson N., Gap and density theorems, Publ. Amer. Math. Soc., N.Y., 1940 | MR | Zbl

[3] Verblunsky S., “On an expansion in exponential series”, Quart. J. Math., 7:27 (1956), 231–240 | DOI | MR | Zbl

[4] Leontev A. F., “O svoistvakh posledovatelnostei polinomov Dirikhle, skhodyaschikhsya na intervale mnimoi osi”, Izv. AN SSSR. Ser. matem., 29:2 (1965), 269–328 | MR | Zbl

[5] Sedletskii A. M., “Biortogonalnye razlozheniya funktsii v ryady eksponent na intervalakh veschestvennoi osi”, UMN, 37:5 (1982), 51–95 | MR

[6] Molodenkov V. A., Khromov A. P., “Razlozhenie po sobstvennym funktsiyam odnoi kraevoi zadachi dlya operatora differentsirovaniya”, Diff. uravn. i vychisl. matem., no. 1, Saratov, 1972, 17–26 | MR | Zbl

[7] Ponomarev S. M., “Ob odnoi zadache na sobstvennye znacheniya”, DAN SSSR, 249:5 (1979), 1068–1070 | MR | Zbl

[8] Sedletskii A. M., “O ravnomernoi skhodimosti negarmonicheskikh ryadov Fure”, Tr. MIAN, 200, Nauka, M., 1991, 299–309 | MR

[9] Sedletskii A. M., “Rasprostranenie skhodimosti kvazipolinomov”, Izv. AN SSSR. Ser. matem., 44:5 (1980), 1131–1149 | MR

[10] Stein I., Veis G., Vvedenie v garmonicheskii analiz na evklidovykh prostranstvakh, Mir, M., 1974 | Zbl

[11] Moiseev E. I., “O bazisnosti sistem sinusov i kosinusov”, DAN SSSR, 275:4 (1984), 794–798 | MR | Zbl

[12] Sedletskii A. M., “O razreshimosti odnogo integralnogo uravneniya s nachalnym usloviem”, Diff. uravn., 11:12 (1975), 2283–2285 | MR

[13] Levin B. Ya., Raspredelenie kornei tselykh funktsii, GITTL, M., 1956

[14] Stein I., Singulyarnye integraly i differentsialnye svoistva funktsii, Mir, M., 1973 | MR

[15] Duren P. L., Theory of $H^p$ spaces, Academic Press, N.Y., 1970 | MR

[16] Matsaev V. I., Solomyak M. Z., “Ob usloviyakh suschestvovaniya integrala Stiltesa”, Matem. sb., 88:4 (1972), 522–535 | MR | Zbl

[17] Zigmund A., Trigonometricheskie ryady, T. 1, Mir, M., 1965 | MR

[18] Danford N., Shvarts Dzh. T., Lineinye operatory. Obschaya teoriya, IL, M., 1962