Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_2000_64_3_a0, author = {L. R. Volevich and A. R. Shirikyan}, title = {Local dynamics for high-order semilinear hyperbolic equations}, journal = {Izvestiya. Mathematics }, pages = {439--485}, publisher = {mathdoc}, volume = {64}, number = {3}, year = {2000}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_2000_64_3_a0/} }
L. R. Volevich; A. R. Shirikyan. Local dynamics for high-order semilinear hyperbolic equations. Izvestiya. Mathematics , Tome 64 (2000) no. 3, pp. 439-485. http://geodesic.mathdoc.fr/item/IM2_2000_64_3_a0/
[1] Babin A. V., “Drobnye stepeni nelineinogo analiticheskogo differentsialnogo operatora”, Matem. sb., 109:1 (1979), 12–45 | MR | Zbl
[2] Bylov B. F., Vinograd R. E., Grobman D. M., Nemytskii V. V., Teoriya pokazatelei Lyapunova, Nauka, M., 1966 | Zbl
[3] Volevich L. R., Shirikyan A. R., “Eksponentsialnaya dikhotomiya i eksponentsialnoe rasscheplenie dlya giperbolicheskikh uravnenii”, Tr. MMO, 59, URSS, M., 1998, 106–149 | MR | Zbl
[4] Grobman D. M., “O gomeomorfizme sistem differentsialnykh uravnenii”, DAN SSSR, 128:5 (1959), 880–881 | MR | Zbl
[5] Daletskii Yu. L., Krein M. G., Ustoichivost reshenii differentsialnykh uravnenii v banakhovom prostranstve, Nauka, M., 1970 | MR
[6] Koddington E. A., Levinson N., Teoriya obyknovennykh differentsialnykh uravnenii, IL, M., 1958
[7] Mizokhata S., Teoriya uravnenii s chastnymi proizvodnymi, Mir, M., 1977
[8] Nikolenko N. V., “Metod normalnykh form Puankare v zadachakh integriruemosti uravnenii evolyutsionnogo tipa”, UMN, 41:5 (1986), 109–152 | MR | Zbl
[9] Nitetski Z., Vvedenie v differentsialnuyu dinamiku, Mir, M., 1975 | MR | Zbl
[10] Khartman F., Obyknovennye differentsialnye uravneniya, Mir, M., 1970 | MR | Zbl
[11] Khenri D., Geometricheskaya teoriya polulineinykh parabolicheskikh uravnenii, Mir, M., 1985 | MR
[12] Khermander L., Analiz lineinykh differentsialnykh operatorov s chastnymi proizvodnymi. T. 3. Psevdodifferentsialnye operatory, Mir, M., 1987 | MR
[13] Albrecht F., Diamond H. G., “The converse Taylor theorem”, Indiana Math. J., 21 (1971), 347–350 | DOI | MR | Zbl
[14] Bates P., Jones C. K., “Invariant manifolds for semilinear partial differential equations”, Dynamics Reported, 2 (1989), 1–38 | MR | Zbl
[15] Carr J., “Applications of Center Manifold Theory”, Appl. Math. Sci., 35, Springer-Verlag, Heidelberg–Berlin–New York, 1981 | MR | Zbl
[16] Chicone C., Latushkin Y., “Center manifolds for infinite dimensional nonautonomous differential equations”, J. Diff. Eq., 141 (1997), 356–399 | DOI | MR | Zbl
[17] Chow S.-N., Lu K., Shen Y.-Q., “Normal forms for quasiperiodic evolutionary equations”, Discrete Contin. Dynam. Systems, 2:1 (1996), 65–94 | MR | Zbl
[18] Foias C., Saut J.-C., “Linearization and normal form of the Navier–Stokes equations with potential forces”, Ann. Inst. Henri Poincaré, 4 (1987), 1–47 | MR | Zbl
[19] Haraux A., Semi-Linear Hyperbolic Problems in Bounded Domains, Harwood Acad. Publ., Chur–London–Paris–New York–Melbourne, 1987 | MR
[20] Hartman P., “A lemma in the theory of structural stability of differential equations”, Proc. Amer. Math. Soc., 11 (1960), 610–620 | DOI | MR | Zbl
[21] Kelley A., “The stable, center-stable, center, center-unstable, unstable manifolds”, J. Diff. Eq., 3 (1967), 547–570 | DOI | MR
[22] Kirchgässner K., “Wave solutions of reversible systems and applications”, J. Diff. Eq., 45 (1982), 113–127 | DOI | MR | Zbl
[23] McKean H. P., Shatah J., “The nonlinear Schrödinger equation and nonlinear heat equation. Reduction to linear form”, Comm. Pure Appl. Math., XLIV (1991), 1067–1080 | DOI | MR
[24] Mielke A., “A reduction principle for nonautonomous systems in infinite-dimensional spaces”, J. Diff. Eq., 65:2 (1986), 322–355 | MR
[25] Mielke A., “Locally invariant manifolds for quasilinear parabolic equations”, Rocky Mountain J. Math., 21:2 (1991), 707–714 | DOI | MR | Zbl
[26] Mielke A., “Essential manifolds for an elliptic problem in an infinite strip”, J. Diff. Eq., 110:2 (1994), 322–355 | DOI | MR | Zbl
[27] Mora X., Solà-Morales J., “Existence and non-existence of finite-dimensional globally attracting invariant manifolds in semilinear damped wave equations”, Dynamics of Infinite-Dimensional Systems, NATO ASI. Ser. F, 37, eds. S.-N. Chow and J. K. Hale, Springer-Verlag, New York–Berlin, 1987, 187–210 | MR
[28] Palmer K. J., “A generalization of Hartman's linearization theorem”, J. Math. Anal. Appl., 41:3 (1973), 243–255 | DOI | MR
[29] Palmer K. J., “Linearization near an integral manifold”, J. Math. Anal. Appl., 51 (1975), 243–255 | DOI | MR | Zbl
[30] Pugh C. C., “On a theorem of P. Hartman”, Amer. J. Math., 91:2 (1969), 363–367 | DOI | MR | Zbl
[31] Scarpelini A., “Center manifolds of infinite dimensions. I. Main results and applications”, Z. Angew. Math. Phys., 42:1 (1991), 1–31 ; “Center manifolds of infinite dimensions. II: Proofs of the main results”:2, 280–314 | DOI | MR | MR
[32] Shirikyan A. R., Volevich L. R., “Bounded and almost periodic solutions to linear high-order hyperbolic equations”, Math. Nachr., 193 (1998), 137–197 | MR | Zbl
[33] Vanderbauwhede A., “Centre manifolds, normal forms and elementary bifurcations”, Dynamics Reported, 2 (1989), 89–169 | MR | Zbl
[34] Vanderbauwhede A., Iooss G., “Center manifold theory in infinite dimensions”, Dynamics Reported (new series), 1 (1992), 125–163 | MR | Zbl