Local dynamics for high-order semilinear hyperbolic equations
Izvestiya. Mathematics , Tome 64 (2000) no. 3, pp. 439-485.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper is devoted to studying high-order semilinear hyperbolic equations. It is assumed that the equation is a small perturbation of an equation with real constant coefficients and that the roots of the full symbol of the unperturbed equation with respect to the variable $\tau$ dual to time are either separated from the imaginary axis or lie outside the domain $\nu|{\operatorname{Re}\tau}|\delta$, where $\delta>\nu\geqslant 0$. In the first case, it is proved that the phase diagram of the perturbed equation can be linearized in the neighbourhood of zero using a time-preserving family of homeomorphisms and that the constructed homeomorphisms and their inverses are Holder continuous. In the other case, it is proved that the neighbourhood of zero in the phase space of the equation contains a locally invariant smooth manifold $\mathcal M$ which includes all solutions uniformly bounded on the entire time axis and exponentially attracts the solutions bounded on the half-axis. The manifold $\mathcal M$ can be represented as the graph of a non-linear operator that acts on the phase space and is a small perturbation of a pseudo-differential operator whose symbol can be written explicitly. In this case, the dynamics on the invariant manifold $\mathcal M$ is described by a hyperbolic equation whose order coincides with the number of roots of the full symbol that lie in the strip $|{\operatorname{Re}\tau}|\leqslant\nu$.
@article{IM2_2000_64_3_a0,
     author = {L. R. Volevich and A. R. Shirikyan},
     title = {Local dynamics for high-order semilinear hyperbolic equations},
     journal = {Izvestiya. Mathematics },
     pages = {439--485},
     publisher = {mathdoc},
     volume = {64},
     number = {3},
     year = {2000},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2000_64_3_a0/}
}
TY  - JOUR
AU  - L. R. Volevich
AU  - A. R. Shirikyan
TI  - Local dynamics for high-order semilinear hyperbolic equations
JO  - Izvestiya. Mathematics 
PY  - 2000
SP  - 439
EP  - 485
VL  - 64
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2000_64_3_a0/
LA  - en
ID  - IM2_2000_64_3_a0
ER  - 
%0 Journal Article
%A L. R. Volevich
%A A. R. Shirikyan
%T Local dynamics for high-order semilinear hyperbolic equations
%J Izvestiya. Mathematics 
%D 2000
%P 439-485
%V 64
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2000_64_3_a0/
%G en
%F IM2_2000_64_3_a0
L. R. Volevich; A. R. Shirikyan. Local dynamics for high-order semilinear hyperbolic equations. Izvestiya. Mathematics , Tome 64 (2000) no. 3, pp. 439-485. http://geodesic.mathdoc.fr/item/IM2_2000_64_3_a0/

[1] Babin A. V., “Drobnye stepeni nelineinogo analiticheskogo differentsialnogo operatora”, Matem. sb., 109:1 (1979), 12–45 | MR | Zbl

[2] Bylov B. F., Vinograd R. E., Grobman D. M., Nemytskii V. V., Teoriya pokazatelei Lyapunova, Nauka, M., 1966 | Zbl

[3] Volevich L. R., Shirikyan A. R., “Eksponentsialnaya dikhotomiya i eksponentsialnoe rasscheplenie dlya giperbolicheskikh uravnenii”, Tr. MMO, 59, URSS, M., 1998, 106–149 | MR | Zbl

[4] Grobman D. M., “O gomeomorfizme sistem differentsialnykh uravnenii”, DAN SSSR, 128:5 (1959), 880–881 | MR | Zbl

[5] Daletskii Yu. L., Krein M. G., Ustoichivost reshenii differentsialnykh uravnenii v banakhovom prostranstve, Nauka, M., 1970 | MR

[6] Koddington E. A., Levinson N., Teoriya obyknovennykh differentsialnykh uravnenii, IL, M., 1958

[7] Mizokhata S., Teoriya uravnenii s chastnymi proizvodnymi, Mir, M., 1977

[8] Nikolenko N. V., “Metod normalnykh form Puankare v zadachakh integriruemosti uravnenii evolyutsionnogo tipa”, UMN, 41:5 (1986), 109–152 | MR | Zbl

[9] Nitetski Z., Vvedenie v differentsialnuyu dinamiku, Mir, M., 1975 | MR | Zbl

[10] Khartman F., Obyknovennye differentsialnye uravneniya, Mir, M., 1970 | MR | Zbl

[11] Khenri D., Geometricheskaya teoriya polulineinykh parabolicheskikh uravnenii, Mir, M., 1985 | MR

[12] Khermander L., Analiz lineinykh differentsialnykh operatorov s chastnymi proizvodnymi. T. 3. Psevdodifferentsialnye operatory, Mir, M., 1987 | MR

[13] Albrecht F., Diamond H. G., “The converse Taylor theorem”, Indiana Math. J., 21 (1971), 347–350 | DOI | MR | Zbl

[14] Bates P., Jones C. K., “Invariant manifolds for semilinear partial differential equations”, Dynamics Reported, 2 (1989), 1–38 | MR | Zbl

[15] Carr J., “Applications of Center Manifold Theory”, Appl. Math. Sci., 35, Springer-Verlag, Heidelberg–Berlin–New York, 1981 | MR | Zbl

[16] Chicone C., Latushkin Y., “Center manifolds for infinite dimensional nonautonomous differential equations”, J. Diff. Eq., 141 (1997), 356–399 | DOI | MR | Zbl

[17] Chow S.-N., Lu K., Shen Y.-Q., “Normal forms for quasiperiodic evolutionary equations”, Discrete Contin. Dynam. Systems, 2:1 (1996), 65–94 | MR | Zbl

[18] Foias C., Saut J.-C., “Linearization and normal form of the Navier–Stokes equations with potential forces”, Ann. Inst. Henri Poincaré, 4 (1987), 1–47 | MR | Zbl

[19] Haraux A., Semi-Linear Hyperbolic Problems in Bounded Domains, Harwood Acad. Publ., Chur–London–Paris–New York–Melbourne, 1987 | MR

[20] Hartman P., “A lemma in the theory of structural stability of differential equations”, Proc. Amer. Math. Soc., 11 (1960), 610–620 | DOI | MR | Zbl

[21] Kelley A., “The stable, center-stable, center, center-unstable, unstable manifolds”, J. Diff. Eq., 3 (1967), 547–570 | DOI | MR

[22] Kirchgässner K., “Wave solutions of reversible systems and applications”, J. Diff. Eq., 45 (1982), 113–127 | DOI | MR | Zbl

[23] McKean H. P., Shatah J., “The nonlinear Schrödinger equation and nonlinear heat equation. Reduction to linear form”, Comm. Pure Appl. Math., XLIV (1991), 1067–1080 | DOI | MR

[24] Mielke A., “A reduction principle for nonautonomous systems in infinite-dimensional spaces”, J. Diff. Eq., 65:2 (1986), 322–355 | MR

[25] Mielke A., “Locally invariant manifolds for quasilinear parabolic equations”, Rocky Mountain J. Math., 21:2 (1991), 707–714 | DOI | MR | Zbl

[26] Mielke A., “Essential manifolds for an elliptic problem in an infinite strip”, J. Diff. Eq., 110:2 (1994), 322–355 | DOI | MR | Zbl

[27] Mora X., Solà-Morales J., “Existence and non-existence of finite-dimensional globally attracting invariant manifolds in semilinear damped wave equations”, Dynamics of Infinite-Dimensional Systems, NATO ASI. Ser. F, 37, eds. S.-N. Chow and J. K. Hale, Springer-Verlag, New York–Berlin, 1987, 187–210 | MR

[28] Palmer K. J., “A generalization of Hartman's linearization theorem”, J. Math. Anal. Appl., 41:3 (1973), 243–255 | DOI | MR

[29] Palmer K. J., “Linearization near an integral manifold”, J. Math. Anal. Appl., 51 (1975), 243–255 | DOI | MR | Zbl

[30] Pugh C. C., “On a theorem of P. Hartman”, Amer. J. Math., 91:2 (1969), 363–367 | DOI | MR | Zbl

[31] Scarpelini A., “Center manifolds of infinite dimensions. I. Main results and applications”, Z. Angew. Math. Phys., 42:1 (1991), 1–31 ; “Center manifolds of infinite dimensions. II: Proofs of the main results”:2, 280–314 | DOI | MR | MR

[32] Shirikyan A. R., Volevich L. R., “Bounded and almost periodic solutions to linear high-order hyperbolic equations”, Math. Nachr., 193 (1998), 137–197 | MR | Zbl

[33] Vanderbauwhede A., “Centre manifolds, normal forms and elementary bifurcations”, Dynamics Reported, 2 (1989), 89–169 | MR | Zbl

[34] Vanderbauwhede A., Iooss G., “Center manifold theory in infinite dimensions”, Dynamics Reported (new series), 1 (1992), 125–163 | MR | Zbl