Special Lagrangian geometry as slightly deformed algebraic geometry (geometric quantization and mirror symmetry)
Izvestiya. Mathematics , Tome 64 (2000) no. 2, pp. 363-437.

Voir la notice de l'article provenant de la source Math-Net.Ru

The special geometry of calibrated cycles, which is closely related to the mirror symmetry among Calabi–Yau 3-manifolds, is in fact only a specialization of a more general geometry, which may naturally be called slightly deformed algebraic geometry or phase geometry. On the other hand, both of these geometries are parallel to classical gauge theory and its complexification. This article explains this parallelism. Hence the appearance of new invariants in complexified gauge theory (see [9] and [24]) is accompanied by the appearance of analogous invariants in the theory of special Lagrangian cycles, whose development is at present much more modest. Algebraic geometry is transformed into special Lagrangian geometry by the geometric Fourier transform (GFT). Roughly speaking, this construction coincides with the well-known “spectral curve” constructions (see [3], [11] and elsewhere) plus phase geometry.
@article{IM2_2000_64_2_a5,
     author = {A. N. Tyurin},
     title = {Special {Lagrangian} geometry as slightly deformed algebraic geometry (geometric quantization and mirror symmetry)},
     journal = {Izvestiya. Mathematics },
     pages = {363--437},
     publisher = {mathdoc},
     volume = {64},
     number = {2},
     year = {2000},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2000_64_2_a5/}
}
TY  - JOUR
AU  - A. N. Tyurin
TI  - Special Lagrangian geometry as slightly deformed algebraic geometry (geometric quantization and mirror symmetry)
JO  - Izvestiya. Mathematics 
PY  - 2000
SP  - 363
EP  - 437
VL  - 64
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2000_64_2_a5/
LA  - en
ID  - IM2_2000_64_2_a5
ER  - 
%0 Journal Article
%A A. N. Tyurin
%T Special Lagrangian geometry as slightly deformed algebraic geometry (geometric quantization and mirror symmetry)
%J Izvestiya. Mathematics 
%D 2000
%P 363-437
%V 64
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2000_64_2_a5/
%G en
%F IM2_2000_64_2_a5
A. N. Tyurin. Special Lagrangian geometry as slightly deformed algebraic geometry (geometric quantization and mirror symmetry). Izvestiya. Mathematics , Tome 64 (2000) no. 2, pp. 363-437. http://geodesic.mathdoc.fr/item/IM2_2000_64_2_a5/

[1] Aspinwall P. S., Morrison D. R., “String Theory on K3 Surfaces”, Essay on Mirror Manifolds, V. II, eds. B. R. Greene, S.-T. Yau, International Press, Hong-Kong, 1996, 703–716 | MR

[2] Atiyah M. F., “Vector bundles over an elliptic curve”, Proc. London Math. Soc., 3 (1957), 415–452 | MR

[3] Bershadsky M., Johansen A., Pantev T., Sadov V., “On four-dimensional compactifications of $F$-theory”, Nucl. Phys. B, 505 (1997), 165–201 | DOI | MR | Zbl

[4] Clemens H., 2-connected compact complex threefolds, Preprint, 1989 | Zbl

[5] Cox D. A., Zuker S., “Intersection numbers of sections of elliptic surfaces”, Inventiones math., 53 (1979), 1–44 | DOI | MR | Zbl

[6] Donaldson S. K., “Yang–Mills invariants of four-manifolds”, LMS Lecture Notes, 150 (1993), 5–40 | MR

[7] Donaldson S. K., “Complex cobordism, Ashtekar's equations and diffeomorphisms”, LMS Lecture Notes, 192 (1992), 1–15

[8] Donaldson S. K., “The Seiberg–Witten equations and 4-manifold topology”, BAMS, 33:1 (1996), 45–70 | DOI | MR | Zbl

[9] Donaldson S. K., Thomas R. P., Gauge theory in higher dimensions, Preprint, Oxford, 1996 | MR

[10] Dolgachev I., “Mirror symmetry for lattices polarized K3 surfaces”, Alg. Geom. 4. J. Math. Sci., 81 (1996), 2599–2630 | MR | Zbl

[11] Friedman `R., Morgan J., Witten E., “Vector bundles and $F$ theory”, Commun. Math. Phys., 187 (1997), 679–743 | DOI | MR | Zbl

[12] Gross M., Special Lagrangian fibrations. I: topology, E-print alg-geom/9710006 | MR

[13] Gross M., Special Lagrangian fibrations, II, E-print alg-geom/9810

[14] Guillemin V., Sternberg S., Symplectic Techniques in Physics, CUP, 1983 | MR

[15] Gross M., Willson P. M. H., “Mirror symmetry via 3-tori for a class of Calabi–Yau threefolds”, Math. Ann., 309 (1997), 505–531 | DOI | MR | Zbl

[16] Harvey R., Lawson H. B., “Calibrated geometries”, Acta Math., 148 (1982), 47–157 | DOI | MR | Zbl

[17] Hitchin N., The moduli space of special Lagrangian submanifolds, Preprint, Cambridge, 1998, p. 1–14 | MR

[18] Mumford D., Tata lectures on theta, I, Progr. Math., 28, Birkhäuser, 1983 ; Tata lectures on theta. II. Jacobian theta functions and differential equations, Progr. Math., 43, Birkhäuser, 1984 ; Tata lectures on theta, III, Progr. Math., 97, Birkhäuser, 1991 | MR | Zbl | MR | Zbl | MR | Zbl

[19] Pyatetskii-Shapiro I. I., Shafarevich I. R., “Teorema Torelli dlya algebraicheskikh poverkhnostei tipa $K3$”, Izv. AN SSSR. Ser. matem., 35:3 (1971), 530–572 | MR

[20] Pidstrigach V. Ya., Tyurin A. N., “Invarianty gladkoi struktury algebraicheskoi poverkhnosti, zadavaemye operatorom Diraka”, Izv. RAN. Ser. matem., 56:2 (1992), 279–371 | MR | Zbl

[21] Miles Reid, “The moduli space of 3-folds with $K=0$ may nevertheless be irreducible”, Math. Ann., 278 (1987), 329–334 | DOI | MR | Zbl

[22] Sniatycki J., Quantization and Quantum Mechanics, Springer-Verlag, Berlin, 1987

[23] Strominger A., Yau S.-T., Zaslow E., “Mirror symmetry is $T$-duality”, Nucl. Phys. B, 479 (1996), 243–259 | DOI | MR | Zbl

[24] Tyurin A. N., Non-Abelian analogues of Abel's theorem, Preprint I.C.T.P., Trieste, 1997

[25] Tyurin A. N., “Simplekticheskie struktury na mnogoobraziyakh modulei vektornykh rassloenii na algebraicheskoi poverkhnosti s $p_g>0$”, Izv. AN SSSR. Ser. matem., 52:4 (1988), 813–851 | MR

[26] Vafa C., Extending mirror conjecture to Calabi–Yau with bundles, E-print hep-th/9804131 | MR

[27] Woodhouse N., Geometric Quantization, Oxford Univ. Press, London–N.Y., 1980 | MR | Zbl

[28] Donaldson S. K., “Symplectic submanifolds and almost complex geometry”, J. Diff. Geom., 1998

[29] Gromov M., “Soft and hard symplectic geometry”, Proc. ICM (Berkeley, 1986), AMS, 1987, 81–98 | MR | Zbl