Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_2000_64_2_a5, author = {A. N. Tyurin}, title = {Special {Lagrangian} geometry as slightly deformed algebraic geometry (geometric quantization and mirror symmetry)}, journal = {Izvestiya. Mathematics }, pages = {363--437}, publisher = {mathdoc}, volume = {64}, number = {2}, year = {2000}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_2000_64_2_a5/} }
TY - JOUR AU - A. N. Tyurin TI - Special Lagrangian geometry as slightly deformed algebraic geometry (geometric quantization and mirror symmetry) JO - Izvestiya. Mathematics PY - 2000 SP - 363 EP - 437 VL - 64 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IM2_2000_64_2_a5/ LA - en ID - IM2_2000_64_2_a5 ER -
A. N. Tyurin. Special Lagrangian geometry as slightly deformed algebraic geometry (geometric quantization and mirror symmetry). Izvestiya. Mathematics , Tome 64 (2000) no. 2, pp. 363-437. http://geodesic.mathdoc.fr/item/IM2_2000_64_2_a5/
[1] Aspinwall P. S., Morrison D. R., “String Theory on K3 Surfaces”, Essay on Mirror Manifolds, V. II, eds. B. R. Greene, S.-T. Yau, International Press, Hong-Kong, 1996, 703–716 | MR
[2] Atiyah M. F., “Vector bundles over an elliptic curve”, Proc. London Math. Soc., 3 (1957), 415–452 | MR
[3] Bershadsky M., Johansen A., Pantev T., Sadov V., “On four-dimensional compactifications of $F$-theory”, Nucl. Phys. B, 505 (1997), 165–201 | DOI | MR | Zbl
[4] Clemens H., 2-connected compact complex threefolds, Preprint, 1989 | Zbl
[5] Cox D. A., Zuker S., “Intersection numbers of sections of elliptic surfaces”, Inventiones math., 53 (1979), 1–44 | DOI | MR | Zbl
[6] Donaldson S. K., “Yang–Mills invariants of four-manifolds”, LMS Lecture Notes, 150 (1993), 5–40 | MR
[7] Donaldson S. K., “Complex cobordism, Ashtekar's equations and diffeomorphisms”, LMS Lecture Notes, 192 (1992), 1–15
[8] Donaldson S. K., “The Seiberg–Witten equations and 4-manifold topology”, BAMS, 33:1 (1996), 45–70 | DOI | MR | Zbl
[9] Donaldson S. K., Thomas R. P., Gauge theory in higher dimensions, Preprint, Oxford, 1996 | MR
[10] Dolgachev I., “Mirror symmetry for lattices polarized K3 surfaces”, Alg. Geom. 4. J. Math. Sci., 81 (1996), 2599–2630 | MR | Zbl
[11] Friedman `R., Morgan J., Witten E., “Vector bundles and $F$ theory”, Commun. Math. Phys., 187 (1997), 679–743 | DOI | MR | Zbl
[12] Gross M., Special Lagrangian fibrations. I: topology, E-print alg-geom/9710006 | MR
[13] Gross M., Special Lagrangian fibrations, II, E-print alg-geom/9810
[14] Guillemin V., Sternberg S., Symplectic Techniques in Physics, CUP, 1983 | MR
[15] Gross M., Willson P. M. H., “Mirror symmetry via 3-tori for a class of Calabi–Yau threefolds”, Math. Ann., 309 (1997), 505–531 | DOI | MR | Zbl
[16] Harvey R., Lawson H. B., “Calibrated geometries”, Acta Math., 148 (1982), 47–157 | DOI | MR | Zbl
[17] Hitchin N., The moduli space of special Lagrangian submanifolds, Preprint, Cambridge, 1998, p. 1–14 | MR
[18] Mumford D., Tata lectures on theta, I, Progr. Math., 28, Birkhäuser, 1983 ; Tata lectures on theta. II. Jacobian theta functions and differential equations, Progr. Math., 43, Birkhäuser, 1984 ; Tata lectures on theta, III, Progr. Math., 97, Birkhäuser, 1991 | MR | Zbl | MR | Zbl | MR | Zbl
[19] Pyatetskii-Shapiro I. I., Shafarevich I. R., “Teorema Torelli dlya algebraicheskikh poverkhnostei tipa $K3$”, Izv. AN SSSR. Ser. matem., 35:3 (1971), 530–572 | MR
[20] Pidstrigach V. Ya., Tyurin A. N., “Invarianty gladkoi struktury algebraicheskoi poverkhnosti, zadavaemye operatorom Diraka”, Izv. RAN. Ser. matem., 56:2 (1992), 279–371 | MR | Zbl
[21] Miles Reid, “The moduli space of 3-folds with $K=0$ may nevertheless be irreducible”, Math. Ann., 278 (1987), 329–334 | DOI | MR | Zbl
[22] Sniatycki J., Quantization and Quantum Mechanics, Springer-Verlag, Berlin, 1987
[23] Strominger A., Yau S.-T., Zaslow E., “Mirror symmetry is $T$-duality”, Nucl. Phys. B, 479 (1996), 243–259 | DOI | MR | Zbl
[24] Tyurin A. N., Non-Abelian analogues of Abel's theorem, Preprint I.C.T.P., Trieste, 1997
[25] Tyurin A. N., “Simplekticheskie struktury na mnogoobraziyakh modulei vektornykh rassloenii na algebraicheskoi poverkhnosti s $p_g>0$”, Izv. AN SSSR. Ser. matem., 52:4 (1988), 813–851 | MR
[26] Vafa C., Extending mirror conjecture to Calabi–Yau with bundles, E-print hep-th/9804131 | MR
[27] Woodhouse N., Geometric Quantization, Oxford Univ. Press, London–N.Y., 1980 | MR | Zbl
[28] Donaldson S. K., “Symplectic submanifolds and almost complex geometry”, J. Diff. Geom., 1998
[29] Gromov M., “Soft and hard symplectic geometry”, Proc. ICM (Berkeley, 1986), AMS, 1987, 81–98 | MR | Zbl